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ABSTRACT

This paper presents the in-flight results of different Arti-
ficial Neural Network and an evolutionary algorithm as
challenger, performing the inference of the large (4M-
pixels) images on-board OPS-SAT (ESA Cubesat demon-
strator). Artificial Intelligence is a disruptive technol-
ogy to process the sensors data directly on-board satel-
lites. This technology is used to extract then trans-
mit only the useful data to the end users, reducing the
needs for data transmission. Artificial intelligence conse-
quently changes the space observation paradigm, allow-
ing an alert in real time from space through a low data
rate downlink. This use case of cloud segmentation on
4M-pixels images demonstrates that on-board processing
in close real time is already feasible with Deep Learn-
ing algorithms deployed on low-power chip, such as the
System On Chip integrated on this ESA Cubesat.

Key words: Artificial Intelligence; System on Chip;
FPGA; nano satellite; space; cloud segmentation; embed-
ded systems.

1. INTRODUCTION

On the 18th December 2019, the OPS-SAT1 CubeSat
from ESA was launched with tens of experiments aboard,
among which the Artificial Neural Networks (ANNs) de-
veloped by our team from IRT Saint Exupery on the
Cyclone-V FPGA. Early 2021, ESA run our experiment
of which the results are presented in this paper.

1OPS-SAT CubeSat: https://directory.eoportal.
org/web/eoportal/satellite-missions/o/ops-sat

Figure 1: 22nd March 2021: the first image inferred on-
board by an Artificial Neural Network running on OPS-
SAT System On Chip (Cyclone V)

As explained in [1], considering the OPS-SAT camera
performances, and the ground sampling distance of 53m
per pixel at 600km altitude, the detection of clouds was
selected, as a useful service to download only the not
cloudy images. The difficulty to distinguish cloud and
snow with RGB spectral bands is obvious, but the main
objective was to demonstrate the feasibility to perform in-
flight real-time inference by Artificial Neural Networks.
Once this demonstration done, the next major step was to
evaluate the processing performance on several images
stored on-board.
First, to take full advantage of this ESA demonstrator op-
portunity, we developed different ANN architectures, de-
scribed in Section 2. To challenge these neural networks
we also implemented, on the Hard Processing System
(HPS), a model obtained from a genetic programming al-
gorithm called ZGP (see 2.4). Section 3 explains the
method applied to generate the training dataset as rep-
resentative as possible of the diversity of cloud shapes
and colors, with few OPS-SAT images available. The on-
board data test is also detailed.
Our last development step, detailed in Section 4, was to

https://directory.eoportal.org/web/eoportal/satellite-missions/o/ops-sat
https://directory.eoportal.org/web/eoportal/satellite-missions/o/ops-sat


deploy these ANNs on a the FPGA (Field Programmable
Gate Array) part of a space-grade Cyclone-V System On
Module. Section 5 provides and analyses the metrics of
the inferences performed on-board OPS-SAT. Section 6
identifies the lessons learned and the resulting future im-
provements.

2. AI ALGORITHMS IMPLEMENTED ON-
BOARD OPS-SAT

The first challenge consisted in selecting the Neural Net-
works architectures compliant with the limited capability
of the execution board and the limited training data set.
In the literature, neural networks have already been de-
signed to detect and remove clouds together with their
shadow [2], but require more processing power than the
one available in OPS-SAT FPGA. Table 1 summarizes the
four ANN architectures we selected corresponding to the
experiments implemented on OPS-SAT and described in
the next subsections.

FCN = Fully Convolutional Network (LeNet FCN)
= C3.5.1,R,P2,C5.5.1,R,P2,C1.1.1,SG
→ nb of params: 614

CNN = Convolutional Neural Network
= C5.3.1,R,P2,C5.5.1,R,P2,D10,R,D2,SM
→ nb of params: 1429

HNN = Hybrid spiking Neural Network
= C5.3.1,R,P2,C5.5.1,R,P2,hSG,D10,R,D2,SM
→ nb of params: 1688

SNN = fully Spiking Neural Network
= C6.3.1,R,C6.3.1,R,D10,R,D2,SM
→ nb of params: 2666

Ck.n.d = Conv2D(k filters, n× n, dilation rate=d)
Pn = MaxPooling(n× n)
Dn = Dense(n neurons)

R = Relu
SM = SoftMax

(h)SG = (hard)Sigmoid

Table 1: Neural network architectures

2.1. CNN hardware architectures

A preliminary assessment of implementation on Cyclone
V FPGA implies to select a very small convolutional ar-
chitecture as solution, inspired by LeNet-5, with two con-
volutions (3 and 5 filters) and two fully-connected layers
(10 and 2 neurons). To avoid implementing the detection
task we applied classification on very small patches of
28x28 pixels. This size allowed pre-validating our HDL
architecture with the MNIST dataset. Thus we classify
very small areas (784 pixels) on the full image (about 4M
pixels) as ”cloud” or ”no cloud” patches, considering that
large clouds cover anyway hundreds of pixels.

2.2. Spiking Neural Network

Spiking Neural Networks (SNNs) [3] are often consid-
ered as the third generation of Neural Networks. Deriv-
ing from neurosciences, they mimick the event-based be-
haviour of the neural networks found in the brain. Rather
than real-values, spiking neurons encode information into
spikes, which are modeled by 1-bit signals. Therefore,
hardware implementations of SNNs get rid of the costly
Multiplication-Accumulation (MAC) operation involved
in the activation integration process : when an input spike
is received, its corresponding synaptic weight is simply
accumulated (AC). When the accumulator overpasses a
given threshold, an output spike is emitted. Using this
binary event-based paradigm, SNNs try to approach the
computational efficiency of the biological brain, drasti-
cally reducing logic resources required for their imple-
mentations [4].

2.2.1. Hybrid architecture

The Hybrid NN uses both a conventional Formal convo-
lution stage and a spiking fully-connected stage. The aim
of this novel hybrid architecture is to draw advantages
from the disparity of spikes in the topology during infer-
ence. As shown in [3], the highest spiking density occurs
in the first layers, which can counterbalance the SNN ad-
vantages in some particular layers.
The feature extraction stage (Convolution and Pooling) is
the same as in Section 2.1. Its output feature maps are
stored in FIFOs. A Transcoding Module translates pix-
els into spike trains according to rate-coding policy, and
transmits those events to the spiking dense layers. The
spiking dense layers are implemented in a fully-parallel
fashion, i.e. each neuron of the model is physically im-
plemented by an Integrate & Fire neuron [5]. A Termi-
nate Delta module is used to detect the most active out-
put neuron, thus enacting the winning class. The results
of the implementation in terms of logic resources, power
consumption estimation, latency and accuracy are pre-
sented in Table 2.

2.2.2. Full spiking architecture

In order to fully exploit the advantages brought by SNNs,
we propose an architecture in which all the layers of the
neural network are implemented in the spiking domain.
This fully spiking architecture comprises a ’transcod-
ing’ and a ’classification’ modules. These spike gener-
ator (transcoding) and classification modules, represent-
ing the input and the output of the SNN, are connected
to a series of convolutional and fully-connected layers,
represented by dedicated NPU (Neural Processing Unit)
modules. These NPU modules are implemented in a way
that guarantees an event-based communication protocol
fitting the spiking data dynamics. The architecture uses
mostly time-multiplexed computing which allows for re-
ducing the hardware usage. A more detailed description
of the architecture is available in [6].



2.3. Fully Convolutional Network

We then focused on a different approach, expected as
more efficient with respect to our cloud detection task:
the semantic segmentation. While CNN and SNN convert
a 28x28 RGB patch into a single-pixel segmentation map,
FCN converts that patch into a more precise 4x4-pixels
segmentation map. Precise semantic segmentation tasks
are usually solved using skip-connections between the
encoding and decoding layers, as in UNet[7]. These skip-
connections are useful to send high-frequency informa-
tion to the decoder part of the network, while the encoder
part tends to act like a low-pass filter because of succes-
sive convolutions. Clouds getting few high-frequency in-
formation, to remove the skip-connections does not de-
crease the accuracy of the neural network, as shown in
Table 3 of [8], whereas the Table 4 shows that remov-
ing these skip-connections saves a significant amount of
memory during network inference.
In Table 1, we thus present a tiny but competitive Fully
Convolutionnal Network (FCN) that reaches an IoU of
74.16% with 614 parameters on the 38-Cloud [9] dataset
where U-Net reaches 86.08% with around 31M parame-
ters, and where f-Mask [10] reaches 75.16%.

2.4. Zoetrope Genetic Programming

In order to challenge neural networks in the cloud detec-
tion task, we also implemented a model resulting from
an original genetic programming approach for symbolic
regression called Zoetrope Genetic Programming (ZGP)
[11]. Briefly, ZGP generates and evolves individuals
that are mathematical expressions combining input vari-
ables, for instance the pixel RGB components. Its partic-
ularity lays in the way these individuals are genetically-
optimised, which avoids overgrown and too complex
models. After several generations where individuals are
mutated and recombined to fit the data, the ”fittest” indi-
vidual is returned as the final model.
ZGP has several advantages among which its frugality
regarding training data, the low training and inference
computational time, the interpretability of the models and
their easy implementation and portability on embedded
systems.
In this study we used ZGP in two different strategies.
First: ZGP, trained alone on a subset of pixels from each
image of the training set. The descriptors of the pixels
are their RGB values and the model is trained to classify
each pixel of the image as cloud or no cloud. Second:
FCN+ZGP, where ZGP is trained to classify the segmen-
tation map resulting from a FCN In both cases, the re-
sulting model corresponds to a mathematical expression
which, applied to the new pixels of either the image or
the segmentation map, returns the value of the predicted
class (cloud or no cloud).

3. THE OPS-SAT IMAGES DATASET

3.1. Preliminary OPS-SAT data set

When performing supervised learning, the fist task con-
sists in collecting and labelling data to train and test
the AI algorithms . Without any actual OPS-SAT im-
ages available, we first use exogenous data from publicly
available cloud segmentation datasets to train and test
the models before the launch of OPS-SAT. These train-
ing data set included images from the Cloud-38 [9] and
CloudPeru2 data sets[12].
Preliminary results on actual OPS-SAT images have been
published in [1] showing quite good results considering
the exogenous data used for training.

3.2. The OPS-SAT training

Figure 2: Examples of OP-SAT images. Top: sample
from the training data set with cloud and snow. Bottom:
sample from the test data set showing saturated and dark
clouds. Left: RGB image, right: cloud mask overlaid on
image (yellow=cloud, magenta=no cloud)

From the first OPS-SAT acquisitions provided by the
OPS-SAT teams at the end of August 2020, a subset of
19 scenes have been selected in order to be representative
of the diversity of OPS-SAT image acquisitions condi-
tions (off-nadir angle, sun elevation, latitude) with dif-
ferent cloud coverage (fully cloudy, partially cloudy with
sparse and large clouds as well as cloudy-free scenes) and
including various landscapes such as forests, deserts, re-
lief, water and snowy areas as shown in Figure 2. These
19 images have been annotated at pixel level by an im-
age processing expert using a semi-manual labelling tech-
nique. This produced a binary cloud no-cloud segmen-
tation mask usable as ground truth to fine tune and test
the FCN on actual OPS-SAT images. For CNN, non-
overlapping patches of size 28x28 have been extracted
from each annotated image, leading to a set of 95 703
patches and class pairs. These patches have been clas-
sified according to their cloud coverage from 0% (cloud
free patch) up to 100% (fully cloudy patch) by step of



10% cloud coverage in order to build a ground truth
database usable to tune and validate the CNN and SNN.
Then to avoid biases, the ANNs were trained on a re-
duced dataset, excluding for instance images difficult to
annotate with sufficient confidence. At the end only 15
images were kept for training. Regarding the full ZGP
model, the algorithm has been trained on a subset of pix-
els equally sampled from these 15 images leading to a
full dataset containing 10000 pixels.

3.3. The OPS-SAT in-flight test data set

On March 2021, the CIAR experiment have been acti-
vated on-board OPS-SAT. The Figure 5 shows the first
on-board inference results obtained with the new CNN
after fine-tuning. Even if at first glance, the predicted
cloud map fits well the cloud location when overlaid on
the original image (see Figure 5 on the right), one need to
get ground truths to assess in-flight performance metrics.
For that purpose the OPS-SAT team provides us with 23
new images that have been annotated by the same image
processing expert with the same technique used to anno-
tate the training database. It shall be pointed out that the
expert did not have any knowledge of the on-board in-
ference results on these 23 images when he performed
the annotations. For both training and test data sets, the
following rules have been applied while annotating OPS-
SAT images. Transparent clouds such as cirrus or haze
are annotated as no cloud if some landscape features are
visible trough. Very low radiometric level areas produced
by clouds drop shadows are annotated as no cloud if no
landscape features or cloud textures but noise are visible
after image equalization. The test data set is composed of
23 pairs of images and binary cloud/no-cloud segmenta-
tion masks directly usable to assess the performance met-
rics of our AI algorithms. In flight test images encompass
a large variability of acquisitions conditions, cloud cover-
age and landscapes including cloudy areas with saturated
pixels and snowy landscape as shown Figure 2.

4. DEPLOYMENT ON OPS-SAT PAYLOAD CHIP

4.1. Deployment on HPS

The OpsSat’s SoC FPGA Cyclone® V contains an ARM-
based Hard Processor System, which runs Linux and
a Java Virtual Machine (JVM). This JVM runs ESA
NanoSat MO Framework (NMF): as stated in its website,
NMF is a Java software framework for small satellites
based on CCSDS Mission Operations services. It intro-
duces the concept of Apps in space that can be started
and stopped from ground. Apps can retrieve data from the
platform through a set of well-defined MO services. We
thus developed our experiment as an NMF App that sub-
scribes to on-board services like Camera, GPS, Telecom-
mand and exposes its own services like Telemetry. Our
app can be run in realtime mode to process pictures pro-
vided service Camera then to send to Earth the results as

a telemetry that embeds the compressed cloud segmen-
tation map or only the cloud coverage percentage of the
picture. However, in order to access pictures taken by
other on-board experiments, our app can be run by ESOC
team in offline mode to process pictures stored on-board
in a specific SD-CARD directory. In both realtime and
offline mode, our App reformats the RGB 4-mega-pixel
picture, by tiling it into more than 5000 non-overlapping
patches of size 28x28, writes it into the memory-mapped
DDR-RAM of the FPGA, then reads the cloud segmenta-
tion map from the DDR-RAM.

4.2. Deployment on FPGA

The literature provides many tools to translate network
information such as weights, biases and the network
structure in HDL code which can be implemented on
FPGA. We used an ANN to HDL generator that allows
to use a ”pipelined” approach to minimize the execution
time and to take advantage of the efficient FPGA par-
allel calculation. However, this approach constrains the
number and the size of the layers so that the entire neu-
ral network shall fit into the FPGA. Let’s focus on how
the ANN is implemented in the Cyclone V SX and then
how it has been integrated with a full design. As shown
in Table 1, our ANNs are composed of different layers:
2-Dimensional Convolution layers, Max-pooling layers,
and FC layers.

4.2.1. Workflow

To implement the ANN on the MitySom FPGA, we have
to perform the following steps:

• Train the ANN and export its weights, with a python
script converting the input file .h5 into an HDL pack-
age with quantified weights and biases.

• With the ’formal’ CNNs, generate the base HDL
code for the ”CNN” module with VGT.

• Modify the generated code to integrate layers that
are not supported by the tool, and add fixed point
arithmetic.

• For the SNN, directly use our SNN dedicated HDL
code.

• For the HNN, use VGT to generate the HDL for con-
volution and pooling layers, and integrate the dedi-
cated HDL code for parallel fully-connected layers
and ’formal’ to ’spiking’ interface.

• Validate the RTL code on a sub-part of the cloud test
dataset with ModelSim.

• Integrate the NN module into a complete design
with Qsys and synthesize the design.

• Test the synthesized design on the Cyclone V using
the complete cloud test datasets.

https://nanosat-mo-framework.github.io/
https://nanosat-mo-framework.github.io/
https://nanosat-mo-framework.github.io/


4.2.2. Design Overview

The design implemented in the logic part of Cyclone V
is represented in Figure 3. The ”DDR controller” al-
lows connection to the off-chip memory and the ”Di-
rect Memory Access” allows moving the data from/to
the DDR. Three others components have been developed:
the ”CNN” module with the ANNs layers previously de-
scribed. This architecture is detailed in [1].
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Figure 3: Design overview

4.2.3. Fixed-point arithmetic

After training, weights and biases are converted into
fixed-point precision in order to save Logic occupation.
To simplify the HDL design, we implement the same
fixed-point arithmetic for each layer.Fixed-point arith-
metic is composed of two parts: the integer part, which
must be composed of enough bits to avoid overflow in
the different layers, and the fractional part, which must
be composed of as many bits as possible to have a preci-
sion as close as possible to the one of the training.
Thus a compromise must be found in order to avoid over-
flow but also to have enough precision. We tested several
fixed-points configurations FxPX.Y whose X and Y bits
are used respectively after and before the radix point. Our
tests shows the best arithmetic compromise for the CNN
is FxP8.9 since it improves by several points the FxP8.8,
with limited lost with respect to the results in Full Preci-
sion. However the FxP7.10 arithmetic leads to overflows,
which causes a strong degradation of classification per-
formances.
A deeper analysis of the weights and biases, before and
after our naive quantization without retraining, shows in
Table 2 that many values have been rounded to zero,
but this heavily depends on the network training and
its weights and biases initialization. Quantization-aware
training should not only alleviate this problem but also
prevent underflow or overflow to occur.

4.2.4. On-ground preliminary results

The results of the implementation in terms of logic re-
sources, power consumption estimation, latency and ac-
curacy are presented in Table 2. The logic resources and
power consumption estimations are extracted from the
hardware synthesis report of Quartus II® software, while

the accuracies and latencies are measured by running the
application on the Cyclone V MitySom board. In cur-
rent designs the parameters are directly stored in the pro-
grammable logic of the FPGA.
During quantization, weights that are too small become
zero. The more weights are set to 0, the more area is
saved. For instance, we can see in Table 2 that after
quantization more than half of the CNN parameters are
reduced to 0, what impacts its cloud detection efficiency
dividing by more than two its feature maps size.
As expected, SNN experiment brings interesting logic
resources savings, while increasing latency due to the
time-based computation paradigm. The accuracy is also
slightly affected by a trade-off between latency and accu-
racy in the SNN hyper-parameters selection, in order to
mitigate latency increase.

ANN algorithm FCN 8.11 CNN 8.9 HNN 8.8 SNN 8.8
Zeroed weights
and bias (#)

0/0614 809/1440 8/1428 15/2666

Logic Cells
occupation (%)

92 69 63 31

LUTs in classif.
stage (#)

670 5149 1657 332

Registers in
classif. stage (#)

374 3153 1035 339

Block Memory
in classif. stage
(Kbit)

0 0 3.12 36.35

Average latency
per 28x28 patch
(µs)

24.99 24.84 279.1 312.0

Table 2: Hardware resources usage and latency results of
the formal and spiking architectures for the ANN topolo-
gies of Table 1.

5. IN-FLIGHT RESULTS ANALYSIS

5.1. Hardware figure

5.1.1. Code uploading

A first feat in Europe is the uploading on-board of OPS-
SAT, by ESOC team, of the full CNN experiment. First,
several experiments are tested and validated on-ground
on a MitySOM-5CSx. An experiment consists of two
parts: Fisrt, a software that monitors data transfers, and
performs pre and post-processing. Second, a bitstream
that describes FPGA configuration for a specific NN ar-
chitecture.
Once a network has been validated, ESOC team tests the
experiment under similar conditions than those encoun-
tered in-flight thanks to an engineering model. Then, ex-
periment is sent to the satellite with an average measured
data rate of 12,818kB/s using Band S. The upload con-
sists of two compressed files with IPK extension. First,
the software to be executed is a 3.3MB IPK file. It con-
tains Java code and jar librairies. This 3.3MB IPK file is



split into four binary chunks each of size 826kB. Each of
these four chunks takes 1 minute and 8 seconds to up-
link. Then the FPGA Bitstream along with preloader,
bootloader is compressed and packaged into an IPK of
1.5MB in total size. It takes 1 minute and 46 seconds to
uplink this file to the satellite. This first demonstrates the
possibility of exploiting the reprogramming capabilities
of FPGAs to remotly enhance Artificial Intelligence, or
to change the mission of satellites after launch.

5.1.2. Execution time

In-flight inference in the FPGA part of an image of
2048x1944 pixels is done in less than 156ms for the
CNN and FCN. In total, it takes 4 seconds to process
a large image with the CNN architecture, including all
the pre-processing and post-processing performed in the
software. The Table 3 highlights the limited post pro-
cessing required by CNN with most operations made on
FPGA. In the case of the FCN, there are 16 times more
outputs to post-process in software than with the CNN.
The processing is therefore longer than for the CNN. The
addition of a ZGP post-processing to the FCN does not
significantly impact the global inference time, since this
classification operation is done in parallel with the FCN
post-processing. The performances of the full ZGP solu-
tion could have been divided by two by using 2 threads
on the dual core ARM Cortex A9 instead of 1.

Algorithm Hardware FPGA (ms) Total (ms)
CNN 8.9
No pre-processing

FPGA 155 4 370

FCN 8.11 FPGA 156 12 106
FCN
+ZGP

FPGA
+CPU

156 12 177

ZGP CPU 0 32 411

Table 3: Time to process 5037 28x28 patchs including
the post (e.g. to crop the image) and pre processing (e.g.
to generate the telemetry) operations made on HPS.

5.1.3. Power consumption

ESOC provides us current telemetry of two Power Distri-
bution Units(PDU). Each PDU have +5V lines going to
Satellite Experimental Processing Platform(SEPP). One
is dedicated to power the HPS part, the other to power
the FPGA part. Each experiment consumption is detailed
in Table 4.
Power consumption of the HPS part is 2.4 W in average
for the CNNs. In the case of the FCN, the consumption of
the HPS part is higher than for the CNN. This difference
is explained by the fact that the ZGP-based algorithms are
executed in parallel to the FCN pre and post-processings.
The average power consumption of the FPGA part is
around 1.7 W when inferring images with CNN architec-
tures. In contrast, image inference with the FCN architec-
ture represents an average power consumption of 1.61W.
This is 140mW less than the estimation of Quartus Power
Analyzer.
Finally, it can be seen that the total power consumption

of the different experiments performed on-board is rather
stable and represents more than 4W in average.
In the future, it will be interesting to analyze the on-board
power consumption of an experiment based on SNN ar-
chitecture in order to identify power consumption gains
due to the architecture.

ANN
architecture

HPS DPU
FPGA DPU Total

power
Average

Quartus
estimate

CNN 8.8 2,38±0,12 1.70± 0.12 1.59 4.08± 0.19
CNN 8.9 2.41±0.11 1.68±0.09 1.59 4.09± 0.17

FCN 8.11 +
Hybrid ZGP

+ ZGP
2.61±0.08 1.61±0.05 1.75 4.22±0.08

SNN 8.8 (*) - - 1.06 -
HNN 8.8 (*) - - 1.32 -

Table 4: In-flight power consumption in Watt. (*) means
that these results have been obtained on-ground on the
same hardware of the on-board OPS-SAT.

5.2. Inference metrics in-flight

As explained in Section 3, ESOC team gathered 23 4-
megapixel pictures that we annotated on-ground while
they were processed on-board by our algorithms. ESOC
then sent us the segmentation map of each picture for
each algorithm, which enabled us to compute the follow-
ing metrics used in Table 5.

• Accuracy: 100 * (TP + TN) / (TP + TN + FP + FN)

• F-score : 2 * precision * recall / (precision + recall)

TP and TN stand respectively for true positives and neg-
atives; FP and FN stand respectively for false positive
and negative. Among the 23 images acquired on-board,
we selected 10 images to constitute our test dataset eval-
uation while balancing classes cloud/no-cloud, and en-
suring diversity in terms of texture (land, snow, desert,
mountains, cirrus, cumulo-nimbus, etc) and radiometry.
To compare the metrics , the same approach was applied
on the training images, selecting 10 images in order to get
a balanced dataset.

A first quantitative analysis of the Table 5 highlights:

• CNN, HNN and SNN metrics are degraded on test
dataset (negative β-α results) that could be ex-
plained by overfitting. However the improvement
of the FCN metrics can highlight a difference in the
train and test images texture or radiometry impact-
ing the results (to be further investigated)

• CNN with lowest overall metrics on training dataset
(the first ANN deployed on OPS-SAT) is degraded
but not so much by zeroed weights and biases on



ANN
algorithm

Training-set on GPU (α) Testing-set on GPU (β) Testing-set on FPGA (σ)
Fscore Preci Recall Fscore β-α Preci β-α Recall β-α Fscore σ-β Preci σ-β Recall σ-β

CNN (8.9) 58 74 47 56 -2 70 -4 46 -1 49 -7 76 6 37 -9
SNN (8.8) 62 79 51 53 -9 69 -10 44 -7 67 14 62 -7 72 28
HNN (8.8) 61 80 49 58 -3 70 -10 50 1 67 9 76 6 59 9
FCN (8.11) 62 81 51 72 10 75 -6 70 19 72 0 74 -1 69 -1
FCN+ZGP 60 78 49 71 11 74 -4 68 19 71 0 74 0 68 0

ZGP (FP32) 60 62 58 63 3 65 3 62 4 63 0 65 0 62 0

Table 5: Quality metrics of the different AI algorithms when executed on GPU with a 32-bits Floating-Point precision
on training (α) and testing (β) OPS-SAT datasets, whose comparison highlights the generalization capability, and the
inferences of the testing (σ) OPS-SAT dataset on FPGA to highlight the impact of the Fixed-Point quantization when
compared to inferences on GPU/FP32 (β). Results on FPGA (σ) are in-flight inferences except for HNN and SNN, not
yet uploaded on OPS-SAT.

board quantization (σ-β results). However its Pre-
cision, that is a major metric for our use case (lim-
ited risk to discard images without cloud), is the best
one, with worst recall.

• SNN is impacted by spikes encoding, but the results
are very good (F-score close to 70%) considering the
limited resources needed on FPGA (around 30%).

• HNN F-score on FPGA is also close to 70%, with
best Precision but limited Recall performance.

• HNN and SNN have overall metrics (mainly the Re-
call) increased on FPGA (α-β). Both ANN with
spiking layers implement a ’spike generator’. It
transforms the static image’ pixels to spike trains,
permitting a better representation of data which re-
duce uncertainties at the output of the network. The
SNN’s architecture is presented with more details in
a thesis manuscript that is available in [6].

• FCN is clearly the best ANN thanks to 16 more out-
puts. This network is not impacted by quantization
(σ-β results) without any zeroed parameters. It also
takes benefit of the full FPGA resources (more than
90%). Its main drawback is difficulty to segregrate
snow with cloud class.

• ZGP provides homogenous results with very good
generalization (β-α results), and no quantization is-
sues since it is running on CPU.

A qualitative analysis of the full precision images with
False Positive and False Negative reported shows that all
algorithms detection are pertinent. However as expected
it is difficult to segregate snow and cloud for most of
them except the CNN what explains its good precision.
In counterpart this ANN is poor on large clouds with ra-
diometry variance.

6. FURTHER IMPROVEMENTS

During this experiment, we faced some challenges that
hinders us to achieve better performances:

• Segmentation in RGB of clouds that are non-opaque
objects, with undefined shapes, contrary to objects
found in classical datasets (eg: animals, vehicules),

• Large radiometric variations from dark to bright
clouds caused by a wide variability of Sun illumi-
nation conditions due to the OPS-SAT Polar orbit
and large off-nadir pointing angles,

• Characterization of the camera, which is unavailable
hence hinders us to calibrate the image radiometry,

• Small dataset, less than 20 images, including several
scenes difficult to annotate,

• Capabilities of the MitySOM FPGA limiting the
ANNs size and its parameters arithmetic.

Several actions are identified to improve the overall per-
formances. To upgrade the ANNs metrics we propose
several improvement. First, we intend to perform correc-
tions of the raw data to compensate for the Sun illumina-
tion variations. Second, we propose to improve annota-
tion method by adding an unknown class, typically black
holes like drop shadows inside clouds, clouds borders or
transparent clouds that can be ambiguous. Lastly, we
foresee to increase the training dataset in quantity (tens
of images) and in quality (more texture representative-
ness of the ground and the cloud diversity), with well-
balanced classes.
Moreover, new architectures are under development in
compliance with the MitySOM capability. An en-
larged SNN architecture is under evaluation, implement-
ing more filters or additional layers, to take benefit of
the margin resources on the FPGA of the current SNN.
Additionally, to take full control of ANN deployment on
FPGA, we are developing a custom tool. It will parse .h5
model file and automatically generates HDL networks.
These networks contain package for weights and top-
level wrapper that properly instantiates and tunes the dif-
ferent parameters of the HDL layers. In this way, the
CNN will be optimally implemented on FPGAs, manag-
ing also the weights and biases zeroed.
Finally, the ZGP solution can be trained on more pixels
from the training images in order to get a more represen-
tative sample of the entire training set and therefore to



reduce the errors on some types of ground that have not
been learnt by the current model. In order to consider the
context of each single pixel and not only its RGB values,
we plan also to introduce the values of the pixel’s neigh-
bors in a delimited window. Also, to reduce the compu-
tational processing time on HPS/CPU by two, a multi-
threaded implementation of ZGP on two threads can be
performed.

7. CONCLUSION

This OPS-SAT experiment demonstrates the capability
of embedded AI to infer images on-board satellite with
a very high throughput (more than 25 millions of pix-
els per second) and a very low consumption (1.8 Watt in
worst case on FPGA). Another success is the uploading
on-board OPS-SAT, by ESOC team, of the full experi-
ments: around 5min to upload HPS codes, including Java
libraries, and around 2min to upload the FPGA bitstream.

So this successful demonstration changes the space ob-
servation paradigm with the opportunity to extract on
board satellites only the useful information for the end
users. This close real-time processing of the data by
AI, with the capability to upload the algorithms in-flight,
opens a lot of opportunities like performing alert from
space, above all on small satellites, and re-programming
missions in orbit.
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2020.

7. O. Ronneberger, P. Fischer, and T. Brox, “U-net:
Convolutional networks for biomedical image seg-
mentation,” CoRR, vol. abs/1505.04597, 2015.

8. G. Bahl, L. Daniel, M. Moretti, and F. Lafarge,
“Low-power neural networks for semantic segmen-
tation of satellite images,” in Proceedings of the
IEEE/CVF International Conference on Computer
Vision Workshops, Oct 2019.

9. S. Mohajerani and P. Saeedi, “Cloud-net: An end-to-
end cloud detection algorithm for landsat 8 imagery,”
CoRR, vol. abs/1901.10077, 2019.

10. S. Mohajerani, T. A. Krammer, and P. Saeedi, “A
cloud detection algorithm for remote sensing images
using fully convolutional neural networks,” in IEEE
20th International Workshop on Multimedia Signal
Processing (MMSP), pp. 1–5, 2018.

11. A. Boisbunon, C. Fanara, I. Grenet, J. Daeden,
A. Vighi, and M. Schoenauer, “Zoetrope genetic
programming for regression,” in 2021 Genetic and
Evolutionary Computation Conference (GECCO’21),
2021.

12. G. Morales, S. G. Huamán, and J. Telles, “Cloud
detection in high-resolution multispectral satellite
imagery using deep learning,” in Artificial Neural
Networks and Machine Learning (V. Kůrková,
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