Presentation Open Access

Water oceans on high-density exoplanets from coupled interior-atmosphere modeling

Philipp Baumeister; Nicola Tosi; John Lee Grenfell; Jasmine MacKenzie


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Exoplanets</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Habitabiltiy</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Planet interiors</subfield>
  </datafield>
  <controlfield tag="005">20211016014835.0</controlfield>
  <controlfield tag="001">5572685</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">DLR Berlin</subfield>
    <subfield code="0">(orcid)0000-0002-4912-2848</subfield>
    <subfield code="a">Nicola Tosi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">DLR Berlin</subfield>
    <subfield code="0">(orcid)0000-0003-3646-5339</subfield>
    <subfield code="a">John Lee Grenfell</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Technische Universität Berlin</subfield>
    <subfield code="a">Jasmine MacKenzie</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3318195</subfield>
    <subfield code="z">md5:99a00118bf287670934a5ea9812019aa</subfield>
    <subfield code="u">https://zenodo.org/record/5572685/files/Baumeister_PLATO_2021-10-13.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-10-15</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-plato2021</subfield>
    <subfield code="o">oai:zenodo.org:5572685</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">DLR Berlin, Technische Universität Berlin</subfield>
    <subfield code="0">(orcid)0000-0001-9284-0143</subfield>
    <subfield code="a">Philipp Baumeister</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Water oceans on high-density exoplanets from coupled interior-atmosphere modeling</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-plato2021</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Liquid water is generally assumed to be the most important factor for the emergence of life, and so a major goal in exoplanet science is the search for planets with water oceans. On terrestrial planets, the silicate mantle is a large source of water, which can be outgassed into the atmosphere via volcanism. Outgassing is subject to a series of feedback processes between atmosphere and interior, which continually shape both atmospheric composition, pressure, and temperature, as well as interior dynamics.&lt;br&gt;
&lt;br&gt;
We present the results of an extensive parameter study, where we use a newly developed 1D numerical model to simulate the coupled evolution of the atmosphere and interior of terrestrial exoplanets up to 5 Earth masses around&lt;br&gt;
Sun-like stars, with internal structures ranging from Moon- to Mercury-like. The model accounts for the main mechanisms controlling the global-scale, long-term evolution of stagnant-lid rocky planets (i.e. bodies without plate&lt;br&gt;
tectonics), and it includes a large number of atmosphere-interior feedback processes, such as a CO&lt;sub&gt;2&lt;/sub&gt; weathering cycle, volcanic outgassing, a water cycle between ocean and atmosphere, greenhouse heating, as well as the influence of a potential primordial H&lt;sub&gt;2&lt;/sub&gt; atmosphere, which can be lost through escape processes.&lt;br&gt;
&lt;br&gt;
We find that a significant majority of high-density exoplanets (i.e. Mercury-like planets with large cores) are able to outgas and sustain water on their surface. In contrast, most planets with intermediate, Earth-like densities either transition into a runaway greenhouse regime due to strong CO&lt;sub&gt;2&lt;/sub&gt; outgassing, or retain part of their primordial atmosphere, which prevents water from being outgassed. This suggests that high-density planets could be the most promising targets when searching for suitable candidates for hosting liquid water.&lt;/p&gt;

&lt;p&gt;(Presenter: Philipp Baumeister)&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5572684</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5572685</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">presentation</subfield>
  </datafield>
</record>
58
40
views
downloads
All versions This version
Views 5858
Downloads 4040
Data volume 132.7 MB132.7 MB
Unique views 4949
Unique downloads 3434

Share

Cite as