Presentation Open Access
Philipp Baumeister;
Nicola Tosi;
John Lee Grenfell;
Jasmine MacKenzie
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Exoplanets</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Habitabiltiy</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Planet interiors</subfield> </datafield> <controlfield tag="005">20211016014835.0</controlfield> <controlfield tag="001">5572685</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">DLR Berlin</subfield> <subfield code="0">(orcid)0000-0002-4912-2848</subfield> <subfield code="a">Nicola Tosi</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">DLR Berlin</subfield> <subfield code="0">(orcid)0000-0003-3646-5339</subfield> <subfield code="a">John Lee Grenfell</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Technische Universität Berlin</subfield> <subfield code="a">Jasmine MacKenzie</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">3318195</subfield> <subfield code="z">md5:99a00118bf287670934a5ea9812019aa</subfield> <subfield code="u">https://zenodo.org/record/5572685/files/Baumeister_PLATO_2021-10-13.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-10-15</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-plato2021</subfield> <subfield code="o">oai:zenodo.org:5572685</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">DLR Berlin, Technische Universität Berlin</subfield> <subfield code="0">(orcid)0000-0001-9284-0143</subfield> <subfield code="a">Philipp Baumeister</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Water oceans on high-density exoplanets from coupled interior-atmosphere modeling</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-plato2021</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Liquid water is generally assumed to be the most important factor for the emergence of life, and so a major goal in exoplanet science is the search for planets with water oceans. On terrestrial planets, the silicate mantle is a large source of water, which can be outgassed into the atmosphere via volcanism. Outgassing is subject to a series of feedback processes between atmosphere and interior, which continually shape both atmospheric composition, pressure, and temperature, as well as interior dynamics.<br> <br> We present the results of an extensive parameter study, where we use a newly developed 1D numerical model to simulate the coupled evolution of the atmosphere and interior of terrestrial exoplanets up to 5 Earth masses around<br> Sun-like stars, with internal structures ranging from Moon- to Mercury-like. The model accounts for the main mechanisms controlling the global-scale, long-term evolution of stagnant-lid rocky planets (i.e. bodies without plate<br> tectonics), and it includes a large number of atmosphere-interior feedback processes, such as a CO<sub>2</sub> weathering cycle, volcanic outgassing, a water cycle between ocean and atmosphere, greenhouse heating, as well as the influence of a potential primordial H<sub>2</sub> atmosphere, which can be lost through escape processes.<br> <br> We find that a significant majority of high-density exoplanets (i.e. Mercury-like planets with large cores) are able to outgas and sustain water on their surface. In contrast, most planets with intermediate, Earth-like densities either transition into a runaway greenhouse regime due to strong CO<sub>2</sub> outgassing, or retain part of their primordial atmosphere, which prevents water from being outgassed. This suggests that high-density planets could be the most promising targets when searching for suitable candidates for hosting liquid water.</p> <p>(Presenter: Philipp Baumeister)</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.5572684</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.5572685</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">presentation</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 58 | 58 |
Downloads | 40 | 40 |
Data volume | 132.7 MB | 132.7 MB |
Unique views | 49 | 49 |
Unique downloads | 34 | 34 |