Presentation Open Access

Water oceans on high-density exoplanets from coupled interior-atmosphere modeling

Philipp Baumeister; Nicola Tosi; John Lee Grenfell; Jasmine MacKenzie


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5572685</identifier>
  <creators>
    <creator>
      <creatorName>Philipp Baumeister</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9284-0143</nameIdentifier>
      <affiliation>DLR Berlin, Technische Universität Berlin</affiliation>
    </creator>
    <creator>
      <creatorName>Nicola Tosi</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4912-2848</nameIdentifier>
      <affiliation>DLR Berlin</affiliation>
    </creator>
    <creator>
      <creatorName>John Lee Grenfell</creatorName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3646-5339</nameIdentifier>
      <affiliation>DLR Berlin</affiliation>
    </creator>
    <creator>
      <creatorName>Jasmine MacKenzie</creatorName>
      <affiliation>Technische Universität Berlin</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Water oceans on high-density exoplanets from coupled interior-atmosphere modeling</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Exoplanets</subject>
    <subject>Habitabiltiy</subject>
    <subject>Planet interiors</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-10-15</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Presentation</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5572685</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5572684</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/plato2021</relatedIdentifier>
  </relatedIdentifiers>
  <version>v1</version>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Liquid water is generally assumed to be the most important factor for the emergence of life, and so a major goal in exoplanet science is the search for planets with water oceans. On terrestrial planets, the silicate mantle is a large source of water, which can be outgassed into the atmosphere via volcanism. Outgassing is subject to a series of feedback processes between atmosphere and interior, which continually shape both atmospheric composition, pressure, and temperature, as well as interior dynamics.&lt;br&gt;
&lt;br&gt;
We present the results of an extensive parameter study, where we use a newly developed 1D numerical model to simulate the coupled evolution of the atmosphere and interior of terrestrial exoplanets up to 5 Earth masses around&lt;br&gt;
Sun-like stars, with internal structures ranging from Moon- to Mercury-like. The model accounts for the main mechanisms controlling the global-scale, long-term evolution of stagnant-lid rocky planets (i.e. bodies without plate&lt;br&gt;
tectonics), and it includes a large number of atmosphere-interior feedback processes, such as a CO&lt;sub&gt;2&lt;/sub&gt; weathering cycle, volcanic outgassing, a water cycle between ocean and atmosphere, greenhouse heating, as well as the influence of a potential primordial H&lt;sub&gt;2&lt;/sub&gt; atmosphere, which can be lost through escape processes.&lt;br&gt;
&lt;br&gt;
We find that a significant majority of high-density exoplanets (i.e. Mercury-like planets with large cores) are able to outgas and sustain water on their surface. In contrast, most planets with intermediate, Earth-like densities either transition into a runaway greenhouse regime due to strong CO&lt;sub&gt;2&lt;/sub&gt; outgassing, or retain part of their primordial atmosphere, which prevents water from being outgassed. This suggests that high-density planets could be the most promising targets when searching for suitable candidates for hosting liquid water.&lt;/p&gt;

&lt;p&gt;(Presenter: Philipp Baumeister)&lt;/p&gt;</description>
  </descriptions>
</resource>
58
40
views
downloads
All versions This version
Views 5858
Downloads 4040
Data volume 132.7 MB132.7 MB
Unique views 4949
Unique downloads 3434

Share

Cite as