Presentation Open Access
Philipp Baumeister;
Nicola Tosi;
John Lee Grenfell;
Jasmine MacKenzie
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5572685</identifier> <creators> <creator> <creatorName>Philipp Baumeister</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-9284-0143</nameIdentifier> <affiliation>DLR Berlin, Technische Universität Berlin</affiliation> </creator> <creator> <creatorName>Nicola Tosi</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-4912-2848</nameIdentifier> <affiliation>DLR Berlin</affiliation> </creator> <creator> <creatorName>John Lee Grenfell</creatorName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-3646-5339</nameIdentifier> <affiliation>DLR Berlin</affiliation> </creator> <creator> <creatorName>Jasmine MacKenzie</creatorName> <affiliation>Technische Universität Berlin</affiliation> </creator> </creators> <titles> <title>Water oceans on high-density exoplanets from coupled interior-atmosphere modeling</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <subjects> <subject>Exoplanets</subject> <subject>Habitabiltiy</subject> <subject>Planet interiors</subject> </subjects> <dates> <date dateType="Issued">2021-10-15</date> </dates> <resourceType resourceTypeGeneral="Text">Presentation</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5572685</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5572684</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/plato2021</relatedIdentifier> </relatedIdentifiers> <version>v1</version> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Liquid water is generally assumed to be the most important factor for the emergence of life, and so a major goal in exoplanet science is the search for planets with water oceans. On terrestrial planets, the silicate mantle is a large source of water, which can be outgassed into the atmosphere via volcanism. Outgassing is subject to a series of feedback processes between atmosphere and interior, which continually shape both atmospheric composition, pressure, and temperature, as well as interior dynamics.<br> <br> We present the results of an extensive parameter study, where we use a newly developed 1D numerical model to simulate the coupled evolution of the atmosphere and interior of terrestrial exoplanets up to 5 Earth masses around<br> Sun-like stars, with internal structures ranging from Moon- to Mercury-like. The model accounts for the main mechanisms controlling the global-scale, long-term evolution of stagnant-lid rocky planets (i.e. bodies without plate<br> tectonics), and it includes a large number of atmosphere-interior feedback processes, such as a CO<sub>2</sub> weathering cycle, volcanic outgassing, a water cycle between ocean and atmosphere, greenhouse heating, as well as the influence of a potential primordial H<sub>2</sub> atmosphere, which can be lost through escape processes.<br> <br> We find that a significant majority of high-density exoplanets (i.e. Mercury-like planets with large cores) are able to outgas and sustain water on their surface. In contrast, most planets with intermediate, Earth-like densities either transition into a runaway greenhouse regime due to strong CO<sub>2</sub> outgassing, or retain part of their primordial atmosphere, which prevents water from being outgassed. This suggests that high-density planets could be the most promising targets when searching for suitable candidates for hosting liquid water.</p> <p>(Presenter: Philipp Baumeister)</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 58 | 58 |
Downloads | 40 | 40 |
Data volume | 132.7 MB | 132.7 MB |
Unique views | 49 | 49 |
Unique downloads | 34 | 34 |