Presentation Open Access

Water oceans on high-density exoplanets from coupled interior-atmosphere modeling

Philipp Baumeister; Nicola Tosi; John Lee Grenfell; Jasmine MacKenzie


DCAT Export

<?xml version='1.0' encoding='utf-8'?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:adms="http://www.w3.org/ns/adms#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dct="http://purl.org/dc/terms/" xmlns:dctype="http://purl.org/dc/dcmitype/" xmlns:dcat="http://www.w3.org/ns/dcat#" xmlns:duv="http://www.w3.org/ns/duv#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:frapo="http://purl.org/cerif/frapo/" xmlns:geo="http://www.w3.org/2003/01/geo/wgs84_pos#" xmlns:gsp="http://www.opengis.net/ont/geosparql#" xmlns:locn="http://www.w3.org/ns/locn#" xmlns:org="http://www.w3.org/ns/org#" xmlns:owl="http://www.w3.org/2002/07/owl#" xmlns:prov="http://www.w3.org/ns/prov#" xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" xmlns:schema="http://schema.org/" xmlns:skos="http://www.w3.org/2004/02/skos/core#" xmlns:vcard="http://www.w3.org/2006/vcard/ns#" xmlns:wdrs="http://www.w3.org/2007/05/powder-s#">
  <rdf:Description rdf:about="https://doi.org/10.5281/zenodo.5572685">
    <rdf:type rdf:resource="http://www.w3.org/ns/dcat#Dataset"/>
    <dct:type rdf:resource="http://purl.org/dc/dcmitype/Text"/>
    <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://doi.org/10.5281/zenodo.5572685</dct:identifier>
    <foaf:page rdf:resource="https://doi.org/10.5281/zenodo.5572685"/>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0001-9284-0143">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0001-9284-0143</dct:identifier>
        <foaf:name>Philipp Baumeister</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>DLR Berlin, Technische Universität Berlin</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0002-4912-2848">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0002-4912-2848</dct:identifier>
        <foaf:name>Nicola Tosi</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>DLR Berlin</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description rdf:about="http://orcid.org/0000-0003-3646-5339">
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <dct:identifier rdf:datatype="http://www.w3.org/2001/XMLSchema#string">0000-0003-3646-5339</dct:identifier>
        <foaf:name>John Lee Grenfell</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>DLR Berlin</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:creator>
      <rdf:Description>
        <rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Agent"/>
        <foaf:name>Jasmine MacKenzie</foaf:name>
        <org:memberOf>
          <foaf:Organization>
            <foaf:name>Technische Universität Berlin</foaf:name>
          </foaf:Organization>
        </org:memberOf>
      </rdf:Description>
    </dct:creator>
    <dct:title>Water oceans on high-density exoplanets from coupled interior-atmosphere modeling</dct:title>
    <dct:publisher>
      <foaf:Agent>
        <foaf:name>Zenodo</foaf:name>
      </foaf:Agent>
    </dct:publisher>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">2021</dct:issued>
    <dcat:keyword>Exoplanets</dcat:keyword>
    <dcat:keyword>Habitabiltiy</dcat:keyword>
    <dcat:keyword>Planet interiors</dcat:keyword>
    <dct:issued rdf:datatype="http://www.w3.org/2001/XMLSchema#date">2021-10-15</dct:issued>
    <owl:sameAs rdf:resource="https://zenodo.org/record/5572685"/>
    <adms:identifier>
      <adms:Identifier>
        <skos:notation rdf:datatype="http://www.w3.org/2001/XMLSchema#anyURI">https://zenodo.org/record/5572685</skos:notation>
        <adms:schemeAgency>url</adms:schemeAgency>
      </adms:Identifier>
    </adms:identifier>
    <dct:isVersionOf rdf:resource="https://doi.org/10.5281/zenodo.5572684"/>
    <dct:isPartOf rdf:resource="https://zenodo.org/communities/plato2021"/>
    <owl:versionInfo>v1</owl:versionInfo>
    <dct:description>&lt;p&gt;Liquid water is generally assumed to be the most important factor for the emergence of life, and so a major goal in exoplanet science is the search for planets with water oceans. On terrestrial planets, the silicate mantle is a large source of water, which can be outgassed into the atmosphere via volcanism. Outgassing is subject to a series of feedback processes between atmosphere and interior, which continually shape both atmospheric composition, pressure, and temperature, as well as interior dynamics.&lt;br&gt; &lt;br&gt; We present the results of an extensive parameter study, where we use a newly developed 1D numerical model to simulate the coupled evolution of the atmosphere and interior of terrestrial exoplanets up to 5 Earth masses around&lt;br&gt; Sun-like stars, with internal structures ranging from Moon- to Mercury-like. The model accounts for the main mechanisms controlling the global-scale, long-term evolution of stagnant-lid rocky planets (i.e. bodies without plate&lt;br&gt; tectonics), and it includes a large number of atmosphere-interior feedback processes, such as a CO&lt;sub&gt;2&lt;/sub&gt; weathering cycle, volcanic outgassing, a water cycle between ocean and atmosphere, greenhouse heating, as well as the influence of a potential primordial H&lt;sub&gt;2&lt;/sub&gt; atmosphere, which can be lost through escape processes.&lt;br&gt; &lt;br&gt; We find that a significant majority of high-density exoplanets (i.e. Mercury-like planets with large cores) are able to outgas and sustain water on their surface. In contrast, most planets with intermediate, Earth-like densities either transition into a runaway greenhouse regime due to strong CO&lt;sub&gt;2&lt;/sub&gt; outgassing, or retain part of their primordial atmosphere, which prevents water from being outgassed. This suggests that high-density planets could be the most promising targets when searching for suitable candidates for hosting liquid water.&lt;/p&gt; &lt;p&gt;(Presenter: Philipp Baumeister)&lt;/p&gt;</dct:description>
    <dct:accessRights rdf:resource="http://publications.europa.eu/resource/authority/access-right/PUBLIC"/>
    <dct:accessRights>
      <dct:RightsStatement rdf:about="info:eu-repo/semantics/openAccess">
        <rdfs:label>Open Access</rdfs:label>
      </dct:RightsStatement>
    </dct:accessRights>
    <dcat:distribution>
      <dcat:Distribution>
        <dct:license rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5572685"/>
      </dcat:Distribution>
    </dcat:distribution>
    <dcat:distribution>
      <dcat:Distribution>
        <dcat:accessURL rdf:resource="https://doi.org/10.5281/zenodo.5572685"/>
        <dcat:byteSize>3318195</dcat:byteSize>
        <dcat:downloadURL rdf:resource="https://zenodo.org/record/5572685/files/Baumeister_PLATO_2021-10-13.pdf"/>
        <dcat:mediaType>application/pdf</dcat:mediaType>
      </dcat:Distribution>
    </dcat:distribution>
  </rdf:Description>
</rdf:RDF>
58
40
views
downloads
All versions This version
Views 5858
Downloads 4040
Data volume 132.7 MB132.7 MB
Unique views 4949
Unique downloads 3434

Share

Cite as