Reliable Machine Learning Acceleration for Future Space Processors and FPGAs: LEON, NOEL-V and TASTE

Marc Solé Bonet, Jannis Wolf, Leonidas Kosmidis

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Barcelona Supercomputing Center Centro Nacional de Supercomputación

OBDP 2021

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Introduction and Motivation

- (I Increasing interest in artificial intelligence (AI) and machine learning (ML) in space missions: e.g. Mars Perseverance, Φ-Sat-1, OPS-SAT...
- (Existing space processors cannot keep up with their computational needs
- (Use of COTS devices in institutional missions is challenging:
 - (no radiation hardening \rightarrow cannot be (safely) used beyond LEO
 - (Non-space qualified software stacks, lack of RTOS support
- We present two open source hardware designs to increase AI processing capabilities in space:
 - (Low-cost short vector unit to increase AI performance in space CPUs
 - (Low-cost Binarized Neural Network (BNN) accelerator based on TASTE

Low-Cost Short Vector Support for Space Processors

- (Hardware module designed for Gaisler's LEON3 and NOEL-V processors
- (Low-cost hardware unit to speed-up AI applications
 - (Special instructions selected by analyzing the most common ML operations
 - (8-bit integer instructions are enough for ML [1]
- (SIMD architecture such as ARM's NEON
 - (But reduced hardware overhead by reusing the integer register file
 - (C SWAR (SIMD within a register) concept inspired by [2] but combining ideas from mobile GPUs [3] too
- (Saturation option included for all instructions
- [1] T. P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. ISCA, 2017
 [2] Martin Danek. ESA IP Core Extensions for LEON2: daiFPU and SWAR. ESA TEC-ED &TEC-SW Final Presentation Days, May 2020.
- [3] Trompouki, Towards General Purpose Computations on Low-end Mobile GPUs. DATE 2016.³

SIMD: Architecture design

- (Reusing the integer register file simplifies loading and managing the data in the registers
- (Frequently found instructions in ML algorithms added: arithmetic, bitwise, min, max etc.
- (Two pipeline stages:
 - (Vector-Vector operations
 - (Reduction operations
 - (Bypasses when one is not used

SIMD: Architecture design

- (Instructions encode the source and destination register and the operation code for each stage
 - (Exploited unused opcodes in LEON3
 - (Custom extensions for NOEL-V
- (Additional embedded GPU inspired features are included:
 - (Immediate instructions encode commonly used values (e.g. powers of 2)
 - (Masking and Swizzling
 - (Both configured using the special register %scr (SIMD control register)

SIMD: Programming

(Assembler support has been included for the new SIMD instructions

(The tests have been written in C using inline assembly

(Currently working on compiler support

```
1 unsigned char weights[32*32];
2 unsigned char next_layer[32*32];
3 
4 /* Allocate short vectors to specific registers*/
5 register unsigned int a asm("%g4");
6 register unsigned int b asm("%g5");
7 register unsigned int result asm("%g6");
8 
9 /* initialise all a components to 0, ie a.xyzw=0 */
10 a = 0;
11 /* b.xyzw = weights[0].xyzw */
12 b = *((unsigned int*) &weights[0]);
13 /* result.xyzw = a.xyzw + b.xyzw */
14 asm("add_ %g4, %g5, %g6");
15 /* next_layer[0].xyzw = result.xyzw */
16 *((unsigned int*) &next_layer[0])=result;
```

Preliminary Evaluation: Hardware Overhead

We have implemented our design using Xilinx Vivado targeting Artix 7 (Baseline LEON3-MIN@100MHz

Resource	SIMD Cost Absolute Value	% of increase w.r.t. baseline LEON3-MIN
LUTs	1869	25%
FF	168	5.9%

- (Only a fraction of the hardware cost of conventional vector implementations for embedded processors (25% vs 2X) [1]
- (The integration of the SIMD reduced the core frequency to 72MHz
 - (Currently working on design optimisation to achieve the original frequency

[1] M. Johns et al. A Minimal RISC-V Vector Processor for Embedded Systems. FDL 2020 7

Preliminary Evaluation: ML Performance

Matrix multiplication speed-up compared to LEON3-MIN@100MHz
 Essential building block in NN for fully connected and convolution layers

	Matrix size			
Data type	4x4	8x8	16x16	32x32
Int	2.45x	3.81x	3.08x	3.39x
Char	2.24x	3.59x	2.96x	3.31x

(Complex inference application Cifar-10 from [1][2] speed-up:

Cifar-10	4.13x
----------	-------

(Performance improvements despite frequency reduction

 [1] GPU4S Bench: Design and Implementation of an Open GPU Benchmarking Suite for Space On-board Processing. <u>https://www.ac.upc.edu/app/research-reports/public/html/research_center_index-CAP-2019,en.html</u>
 [2] GPU4S (GPUs for Space): Are we there yet? & OBPMark (On-Board Processing Benchmarks) – Open Source Computational Performance Benchmarks for Space Applications, OBDP 2021

FPGA Binary Neural Network (BNN) Accelerator

Combination of CPU, TASTE framework and a BNN FPGA Accelerator

1. CPU loads feature vector

2. ESA's Model-Based TASTE framework handles the communication to accelerator 3. Custom-designed BNN Accelerator on the FPGA performs inference step

4. CPU receives prediction result

Project Properties

(Operation principle

(Inference off-loading to the FPGA BNN accelerator

(Reconfigurable design through the FPGA

- (Flexible adaption to neural network parameters
- (Scalable parallelism

(Reliable and Open Source from the ground up:

- (TASTE correct-by-construction communication: software driver and hardware communication mechanism generation
- (Hand-written VHDL open source code for the accelerator

Binarized Neural Networks

Binarization

- (MAC operation is simplified to XNOR and set bit count operation
- (Reduces memory usage up to 1/32
- (Only marginal performance loss shown in scientific literature

Source: https://www.codeproject.com/Articles/1185278/Accelerating-Neural-Networks-with-Binary-Arithmetic

FPGA Binary Neural Network Accelerator

Basic principle: Fully connected layer cells attached through buffers

Convolutional layer possible through parallel fully connected layers and reconnecting of the feature maps

Why is this very fast?

(Parallelization inside layer

(Parallel bitwise execution only limited by loading weights from BRAM

(Pipelining over layers

(Instead of sequential calculation on the CPU, the first layer can start with the next feature vector after completing the previous one

(Low memory usage

(Effective load and store of weights

Preliminary Evaluation on Simulation

Clock cycles needed for one MNIST pass through fully connected layer with size (512, 512) on a LEON3 and on the accelerator

Speed Up of about 74x. But:

- (FPGA operates at different
 frequency
- Communication overhead is not considered
- ((LEON3 simulation only with TSIM
- → Speed up expected to be smaller in reality

Future Work

(From simulation to hardware

- (LEON3 and BNN accelerator not connected yet
- (Simulation and verification was only performed separately

(Python Code generator integrated with the TASTE framework

- (Integrating binarized layer training into a big DL library like PyTorch
- (After training, get parameters and layer configurations
- (Optimize parallelization scheme and generate VHDL code for the accelerator in a complete model-based manner

Conclusions and Future Work

- (Two work-in-progress open source hardware designs for reliable machine learning acceleration of space on-board systems:
 - (A low-cost AI vector unit for LEON3 and NOEL-V, achieving speedups in matrix multiplication of up to 3.8x and 4.13x in a complex inference chain
 - (Improve CPU frequency to match baseline design
 - (Full compiler support
 - If An FPGA BNN neural network accelerator achieving theoretical speedups of 74x compared to a baseline LEON3 processor
 - (Move from simulation to FPGA
 - **(** Automatic code generation integrated with TASTE and PyTorch
 - **((** Both provide promising preliminary results
 - (Evaluation with space-relevant ML benchmarks: OBPMark and MLAB presented at OBDP 2021

References and Acknowledgements

- (Both projects participate in the Xilinx Open Hardware Design Competition 2021 (Europe):
 - (Vector Unit: <u>https://gitlab.bsc.es/msolebon/grlib-ai-extension</u>
 - II BNN Accelerator: www.github.com/JannisWolf/fpga_bnn_accelerator
- (This work is partially supported by:
 - (the Xilinx University Program (XUP) and XUP Board Partner Red Pitaya
 - (ESA under the GPU4S (GPU for Space) project (ITT AO/1-9010/17/NL/AF)
 - (European Commission's Horizon 2020 programme under the UP2DATE project (grant agreement 871465)
 - (the Spanish Ministry of Economy and Competitiveness (MINECO) under grants PID2019-107255GB and FJCI-2017-34095
 - (the HiPEAC Network of Excellence

Reliable Machine Learning Acceleration for Future Space Processors and FPGAs: LEON, NOEL-V and TASTE

Marc Solé Bonet, Jannis Wolf, Leonidas Kosmidis

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Barcelona Supercomputing Center Centro Nacional de Supercomputación

OBDP 2021

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG