Journal article Open Access

A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques

Bui, Nicola; Cesana, Matteo; Hosseini, S. Amir; Liao, Qi; Malanchini, Ilaria; Widmer, Joerg


JSON Export

{
  "files": [
    {
      "links": {
        "self": "https://zenodo.org/api/files/86c71b51-c6c1-44d5-a4e7-7f0deb5ba9af/07904647.pdf"
      }, 
      "checksum": "md5:b85801dc11b776e66270bcdab16bc35d", 
      "bucket": "86c71b51-c6c1-44d5-a4e7-7f0deb5ba9af", 
      "key": "07904647.pdf", 
      "type": "pdf", 
      "size": 3221655
    }
  ], 
  "owners": [
    22173
  ], 
  "doi": "10.5281/zenodo.556828", 
  "stats": {
    "version_unique_downloads": 141.0, 
    "unique_views": 83.0, 
    "views": 83.0, 
    "version_views": 83.0, 
    "unique_downloads": 144.0, 
    "version_unique_views": 83.0, 
    "volume": 483248250.0, 
    "version_downloads": 147.0, 
    "downloads": 150.0, 
    "version_volume": 473583285.0
  }, 
  "links": {
    "doi": "https://doi.org/10.5281/zenodo.556828", 
    "latest_html": "https://zenodo.org/record/556828", 
    "bucket": "https://zenodo.org/api/files/86c71b51-c6c1-44d5-a4e7-7f0deb5ba9af", 
    "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.556828.svg", 
    "html": "https://zenodo.org/record/556828", 
    "latest": "https://zenodo.org/api/records/556828"
  }, 
  "created": "2017-04-24T05:02:19.043983+00:00", 
  "updated": "2020-01-20T17:44:52.596146+00:00", 
  "conceptrecid": "797503", 
  "revision": 7, 
  "id": 556828, 
  "metadata": {
    "access_right_category": "success", 
    "doi": "10.5281/zenodo.556828", 
    "description": "<p>A growing trend for information technology is to not just react to changes, but anticipate them as much as possible. This paradigm made modern solutions, such as recommendation systems, a ubiquitous presence in today\u2019s digital transactions. Anticipatory networking extends the idea to communication technologies by studying patterns and periodicity in human behavior and network dynamics to optimize network performance. This survey collects and analyzes recent papers leveraging context information to forecast the evolution of network conditions and, in turn, to improve network performance. In particular, we identify the main prediction and optimization tools adopted in this body of work and link them with objectives and constraints of the typical applications and scenarios. Finally, we consider open challenges and research directions to make anticipatory networking part of next generation networks.</p>", 
    "license": {
      "id": "CC-BY-4.0"
    }, 
    "title": "A Survey of Anticipatory Mobile Networking: Context-Based Classification, Prediction Methodologies, and Optimization Techniques", 
    "relations": {
      "version": [
        {
          "count": 1, 
          "index": 0, 
          "parent": {
            "pid_type": "recid", 
            "pid_value": "797503"
          }, 
          "is_last": true, 
          "last_child": {
            "pid_type": "recid", 
            "pid_value": "556828"
          }
        }
      ]
    }, 
    "communities": [
      {
        "id": "h2020_monroe"
      }
    ], 
    "publication_date": "2017-04-24", 
    "creators": [
      {
        "affiliation": "IMDEA Networks Institute", 
        "name": "Bui, Nicola"
      }, 
      {
        "affiliation": "Politecnico di Milano", 
        "name": "Cesana, Matteo"
      }, 
      {
        "affiliation": "NYU Tandon School of Engineering", 
        "name": "Hosseini, S. Amir"
      }, 
      {
        "affiliation": "Nokia Bell Labs", 
        "name": "Liao, Qi"
      }, 
      {
        "affiliation": "Nokia Bell Labs", 
        "name": "Malanchini, Ilaria"
      }, 
      {
        "affiliation": "IMDEA Networks Institute", 
        "name": "Widmer, Joerg"
      }
    ], 
    "access_right": "open", 
    "resource_type": {
      "subtype": "article", 
      "type": "publication", 
      "title": "Journal article"
    }
  }
}
83
147
views
downloads
All versions This version
Views 8383
Downloads 147150
Data volume 473.6 MB483.2 MB
Unique views 8383
Unique downloads 141144

Share

Cite as