Journal article Open Access

Rolling Element Bearing Fault Detection using Statistical Features and Ensemble Classifiers

Chhaya Grover; Neelam Turk


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Empirical mode decomposition, Ensemble classifiers, Statistical features, Vibration signature analysis</subfield>
  </datafield>
  <controlfield tag="005">20211116090159.0</controlfield>
  <controlfield tag="001">5566667</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">J. C. Bose University of Science and Technology,  YMCA, Faridabad, India.</subfield>
    <subfield code="a">Neelam Turk</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">542318</subfield>
    <subfield code="z">md5:ba5637be4015537175e2b4a0e0f6b4f2</subfield>
    <subfield code="u">https://zenodo.org/record/5566667/files/C4836029320 (1).pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-02-29</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5566667</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">350-358</subfield>
    <subfield code="n">3</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Electronics Engineering, J.C. Bose  University of Science and Technology, YMCA, Faridabad, India.</subfield>
    <subfield code="a">Chhaya Grover</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Rolling Element Bearing Fault Detection using  Statistical Features and Ensemble Classifiers</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)C4836029320/2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Rolling element bearing health condition is monitored by analysing its vibration signature. Raw vibration signal picked up through suitably placed accelerometers is difficult to analyse hence many signal processing techniques have been proposed and developed by researchers to process the data for suitably extracting an effective signal feature set. Various machine learning techniques have been used for interpretation and accurate fault diagnosis using this extracted feature set. In this study &amp;ldquo;Empirical mode decomposition&amp;rdquo; is used for pre-processing the raw vibration data. Six &amp;ldquo;Statistical features&amp;rdquo; are extracted from the best Intrinsic mode function obtained through EMD and &amp;ldquo;Ensemble machine learning classifiers&amp;rdquo; are used for bearing fault diagnosis. A stacked ensemble of five classifiers is proposed for accurate fault diagnosis and results are compared with conventional ensemble classifiers to prove its effectiveness.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.C4836.029320</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
17
18
views
downloads
Views 17
Downloads 18
Data volume 11.4 MB
Unique views 15
Unique downloads 15

Share

Cite as