Journal article Open Access

Rolling Element Bearing Fault Detection using Statistical Features and Ensemble Classifiers

Chhaya Grover; Neelam Turk


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="URL">https://zenodo.org/record/5566667</identifier>
  <creators>
    <creator>
      <creatorName>Chhaya Grover</creatorName>
      <affiliation>Department of Electronics Engineering, J.C. Bose  University of Science and Technology, YMCA, Faridabad, India.</affiliation>
    </creator>
    <creator>
      <creatorName>Neelam Turk</creatorName>
      <affiliation>J. C. Bose University of Science and Technology,  YMCA, Faridabad, India.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Rolling Element Bearing Fault Detection using  Statistical Features and Ensemble Classifiers</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2020</publicationYear>
  <subjects>
    <subject>Empirical mode decomposition, Ensemble classifiers, Statistical features, Vibration signature analysis</subject>
    <subject subjectScheme="issn">2249-8958</subject>
    <subject subjectScheme="handle">C4836029320/2020©BEIESP</subject>
  </subjects>
  <contributors>
    <contributor contributorType="Sponsor">
      <contributorName>Blue Eyes Intelligence Engineering  &amp; Sciences Publication (BEIESP)</contributorName>
      <affiliation>Publisher</affiliation>
    </contributor>
  </contributors>
  <dates>
    <date dateType="Issued">2020-02-29</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="JournalArticle"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5566667</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="JournalArticle">2249-8958</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.C4836.029320</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;Rolling element bearing health condition is monitored by analysing its vibration signature. Raw vibration signal picked up through suitably placed accelerometers is difficult to analyse hence many signal processing techniques have been proposed and developed by researchers to process the data for suitably extracting an effective signal feature set. Various machine learning techniques have been used for interpretation and accurate fault diagnosis using this extracted feature set. In this study &amp;ldquo;Empirical mode decomposition&amp;rdquo; is used for pre-processing the raw vibration data. Six &amp;ldquo;Statistical features&amp;rdquo; are extracted from the best Intrinsic mode function obtained through EMD and &amp;ldquo;Ensemble machine learning classifiers&amp;rdquo; are used for bearing fault diagnosis. A stacked ensemble of five classifiers is proposed for accurate fault diagnosis and results are compared with conventional ensemble classifiers to prove its effectiveness.&lt;/p&gt;</description>
  </descriptions>
</resource>
17
18
views
downloads
Views 17
Downloads 18
Data volume 11.4 MB
Unique views 15
Unique downloads 15

Share

Cite as