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Abstract: This paper proposes CAF algorithm to estimate 
localisation accuracy of a stationary emitter which is being 
monitored by a pair of sensors mounted on high altitudes. It 
computes joint Time Difference of Arrival (TDOA) and 
Frequency Difference of Arrival (FDOA) using Cross Ambiguity 
Function (CAF) and measures geolocation accuracy in presence 
of biasing in sensor position and velocity. Previous work in this 
area utilizes TDOA and FDOA measurements with known sensor 
kinematics which is fed to Maximum Likelihood or Least Squares 
algorithm for post processing. However it is computation 
demanding. In the present work, surface peaks of TDOA and 
FDOA values are directly mapped to geographic coordinates. This 
method is computationally efficient. As sensor and emitter 
geometry keeps changing over time due to moving sensors, 
multiple CAF snapshots are taken for emitter geolocation. 
Simulations are carried out using MATLAB. It is observed that at 
30 dB SNR, location accuracy of stationary emitter is 100 m at 
known sensor kinematics and by introducing bias in the receiver 
position and velocity, it is 200 meters. These measurements are 
well within and in accordance with theoretical developments. 

 
Keywords: Cross Ambiguity Function, Frequency Difference of 

Arrival, Localisation, Time Difference of Arrival, Unmanned Aerial 
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I. INTRODUCTION 

Estimating precise geographical location of a stationary 
emitter is critical for both military and civilian applications. 
Received Signal Strengths (RSS), Time Of Arrival (TOA), 
Time Difference Of Arrival (TDOA) and Angle Of Arrival 
(AOA) are some of the techniques used for localisation, each 
with its associated strengths and weakness. However, 
localisation using joint TDOA and FDOA measures is quite 
popular Classical methods of localisations based on TDOA 
and FDOA was a two-step process. In the first step, 
differential delay and Doppler frequency shifts between pair 
of sensor is measured In the second step, these estimates are 
used in statistical signal processing algorithms for emitter 
location But these methods were computationally too 
extensive and gave accurate results only in special 
conditions.  
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Conventional TDOA and FDOA methods based on CAF 
using higher order statistics, wideband signals and 
uncorrelated signals is also covered in literature Also the 
problem of joint TDOA and FDOA is studied in widely. But 
these methods required large amount of data to be shared 
between sensors before doing CAF measurements. In this 
work we consider the use of joint TDOA and FDOA using 
CAF-map measurements along with moving target model, in 
order to estimate the stationary emitter placed on the surface 
of the earth. Measurements using TDOA only requires 
minimum of three sensors corresponding to two TDOA 
measurements and intersection of two hyperbolas. FDOA 
only measurement can happen when there is a Doppler shift. 
CAF has an advantage as it uses joint TDOA and FDOA 
measurement. It is also attractive as it requires minimal 
number of sensors (two UAVs) which is easy to be deployed. 
In CAF-map method the estimated TDOA and FDOA 
measurements are mapped on the earth surface. Then the 
emitter location is estimated from this map which maximises 
the magnitudes of the CAF map. 

The main contributions of this paper are as follows: 

1. The proposed paper estimates geolocation accuracy of 
RF emitters using moving sensors placed on mobile 
platform / high altitudes. 

2. Cross ambiguity function is used  to compute surface 
peaks of TDOA and FDOA measurements. These are 
then mapped directly to geographical coordinates. 

3. Geolocation accuracy is computed in presence of bias in 
sensor kinematics. Results are tabulated for the same. 

4. Simulations are carried out using MATLAB toolbox. 
Using the proposed method, better geolocation accuracy 
is achieved with less complexity. 

The remainder of this paper is organised as follows: In 
section II, joint TDOA and FDOA localisation model is 
introduced. Properties of two dimensional Cross Ambiguity 
Function and its algorithm is formulated in section III. 
Simulations and results of proposed algorithm is covered in 
section IV. Conclusions and future directions of this work is 
given in section V. 

II. JOINT TDOA AND FDOA LOCALISATION 

MODEL  

In this section we’ll discuss the localisation scenario and 

formulate the problem statement mathematically.  

A. Problem Formulation 

For localisation scenario, the following assumptions are 
made. It is assumed that emitter is fixed and placed on the 
surface of the earth.  
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 Signals are received at the emitter using pair of sensors 
which are either mobile or airborne (preferably Unmanned 
Aerial Vehicles (UAVs)). Also for the passive emitter 
localisation system it is assumed that there is Line of sight 
between the transmitting emitter and a pair of receivers. For 
sake of simplicity, multipath is assumed to be negligible. An 
example of such a scenario would be localisation of a 
stationary transponder placed on surface of earth which is 
being steered by a pair of receivers which are placed on 
mobile platform.  These assumptions do not affect the emitter 
localisation accuracy. 

Assume position of the emitter is

( )
Te e e e 3 1

t t tt x , y ,z  =  p , T denotes the matrix transpose. 

This emitter position is estimated through M receivers, M=2, 
which measures signals emitted by emitter. Let us represent 

the position of receiver by 
TT T

1 2, =  p p p and its velocity by 

TT T
1 2, =  p p p , where jp  and jp are the location 

parameters of receiver j, j=1, 2. In Cartesian coordinate,

( )
T 3 1

j t t tt x , y ,z , j 1,2 =  = p denotes the position 

vector of receiver, and corresponding velocity vector is j (t)p . 

In this paper we’ll consider two cases. Firstly p  and 𝐩̇∘are 

known and ( )e tp  has to be localised accurately. In the 

second case, exact  p  and𝐩̇∘is not known and biasing is 

introduced i.e. 
TT T

1 2,  = + p = p p p p  and 

T T
1 2, = = + p p p p p , where jp  and jp  are the bias in 

the receiver position and also in receiver velocity. In vector 
form, the receiver location is denoted by

TT T, = = + p p   . Here 
TT T,  =   p p is 

assumed to be a vector of random, zero mean of Additive 
White Gaussian Noise (AWGN). In the presence of biasing, 
again the location accuracy of ( )e tp  will be determined. The 

objective of this paper is to estimate ( )e tp  as accurately as 

possible under no bias and bias conditions. 

III. TWO-DIMENSIONAL CROSS AMBIGUITY 

FUNCTION 

Consider a stationary emitter transmitting a narrowband 
signal s(t) whose carrier frequency is cf . Bandwidth of signal 

s(t)  is B and it satisfies the condition cB f . This signal can 

be modelled as ( ) cj2 f ts t e  . This signal is observed by a pair of 

moving receivers and it becomes ( ) cj2 f ts t e   which causes 

Doppler shift. This signal can be approximated as cj2 f ts(t)e   . 

As distance between emitter and receiver exists, the signal 

will be delayed by  and the signal becomes ( ) cj2 f ts t e  − . 

Even though signal source is common to both UAVs, there is 
a time difference of arrival caused due to different paths 
travelled by the signal and Doppler frequency shift as both 
the receivers are moving with different velocities. For jointly 
estimating TDOA and FDOA measurements, Cross 
Ambiguity Function (CAF) is calculated. This function 
correlates the signals ( )1s t  and ( )2s t which is received by 

receivers 1 and 2. These signals are parameterised by time lag 
 and Doppler shift  . Mathematically it can be written as  

( ) ( ) ( )1 1s t = s t +n t              (1) 

( ) ( ) ( )jf(t-τ)
2 2s t = s t - ν e +n t           (2) 

where, ( )1s t  is the signal received at UAV1 with AWGN 

as  ( )1n t at s(t) .  ( )2s t  is the signal received at UAV2 with 

AWGN ( )2n t  . It is added with  time delay   and frequency 

difference   to the signal s(t) . The CAF is defined as 

2
1 20

( , ) ( ) ( )     −= +
T j ts t s t e dt            (3) 

In which T represents the integration time, * is conjuction , 
𝑗 = √−1 denotes imaginary part. Writing in discrete form, 
this equation can be written as 

( )
1 2

1 2
0

, [ ( ) ( )]


  
− −



=

= −
knN j
N

n

k s n s n e        (4) 

where, t nTs=  , skf
v

N
=  , sT = Sampling period,

1
=s

s

f
T

  

represents sampling frequency, n represents sample numbers 
and N  as total number of samples. 

Estimates of TDOA and FDOA measurements are found 
by optimising the following  

  ( )m m ,ˆˆ , arg max A ,    =            (5) 

where, ( ),    is the CAF. 

A. CAF Map Algorithm 

For the received signals ( )1s t  and ( )2s t , TDOA and 

FDOA estimates are calculated theoretically. Then a lookup 
table is created for the calculated theoretical values. Joint 
TDOA and FDOA measurements are taken using CAF.  CAF 
map algorithm directly maps the theoretical values to a 
common geographic frame. Considering the search area as 
grid and emitter to be located as placed on grid, CAF is 
evaluated on the grids of time grid and frequency grid using 
grid search. During this, the time resolution is sT  and 

frequency resolution is
s

1

T
. For the maximum value of CAF, 

the time bin and the frequency bin is found out.   Main lobe is 
searched for and then the maximisation is done.   

Algorithm for joint TDOA and FDOA using CAF 
considering no-bias in sensor kinematics is summarized in 
Algorithm 1. The same procedure is repeated by introducing 
bias in the sensor / receiver position and velocities. 
Algorithm for joint TDOA and FDOA using CAF 
considering bias in sensor kinematics is summarized in 
Algorithm 2. 
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Algorithm 1. CAF Map algorithm without bias  

 
Algorithm 1. CAF Map algorithm with no-bias in   

         sensor kinematics 
Input:   
1) Enter initial position vector of sensor 1 as  1p

 
2) Enter initial position vector of sensor 2 as  2p  

3) Enter initial velocity vector of sensor 1 as  1p  

4) Enter initial position vector of sensor 2 as  2p  

5) Signal generated from emitter is s(t) 
6) Define area of interest for the emitter 
7) Define the grid sizes. 
8) for m = 1 to number of snapshots 
       for n = 1 to number of samples of signal 

• Evaluate TDOA and FDOA values 
• Calculate corresponding cross ambiguity 
function 

  end for 
   Map the estimates of CAF to geographical    

       coordinates. 
 end for 
6) Find the CAF peaks from defined grid values on area of 

interest. 
Output: 
7) Estimated CAF peak values 
8) 3D CAF plot showing estimated geolocation accuracy. 
 
Algorithm 2. CAF Map algorithm with bias  
 
Algorithm 2. CAF Map algorithm with bias in sensor  

         kinematics. 
Input: 
1) Enter initial position vector of sensor 1 as  1p

 
2) Enter initial position vector of sensor 2 as  2p  

3) Enter initial velocity vector of sensor 1 as  1p  

4) Enter initial position vector of sensor 2 as  2p  

5) Add random bias in position vector of sensor 1. 
   1 1 1 = +p p      

6) Add random bias in position vector of sensor 2. 
   2 2 2 = +p p  
7) Add random bias in velocity vector of sensor 1. 
   1 1 1 = +p p     

8) Add random bias in velocity vector of sensor 2. 
   2 2 2 = +p p  

9)   Signal generated from emitter is s(t) 
10) Define area of interest for the emitter 
11) Define the grid sizes. 
12) for m = 1 to number of snapshots 
       for n = 1 to number of samples of signal 

• Evaluate TDOA and FDOA values 
• Calculate corresponding cross ambiguity 
function 

   end for 
   Map the estimates of CAF to geographical    

       coordinates. 
   end for 
13) Find the CAF peaks from defined grid  values on area 

 of interest. 

Output: 
14) Estimated CAF peak values 
15) 3D CAF plot showing estimated geolocation accuracy. 
 

IV. SIMULATION RESULTS 

This section contains quantitative results to demonstrate 
the proposed algorithm and evaluate it under no bias and bias 
conditions. The initial position and velocity of a pair of 
UAVs / receivers considered is  T

1 0,2,8 km=p and

 T
1 100,0,0 m sec=p  T

2 3,0,8 km=p and

 T
2 100,0,0 m sec=p respectively. The true position and 

velocity of the stationary emitter is (11, 11, 0) km and (0,0,0) 
m/sec. For computer simulations, we have assumed binary 
signal with signal parameters as listed in Table- I.  

Table- I: Input parameters used during simulation 

Input System 
Parameters 

Value 

Input Carrier Frequency fc=1000.025 MHz 
Input Sampling 

Frequency 
fs=100 KHz 

Symbol rate 10,000 symbols/sec 
Signal to Noise Ratio S1 = 30 dB, S2 = 30 dB 

Number of samples 
variable (N=213, 214, 
216) 

Number of snapshots 10, 20, 30 

For varying emitter receiver geometry is over time, various 
snapshots of the signal is taken. Here we have considered 
signal length corresponding to number of samples of signal 
taken as 213 = 8192, 214 = 16384 and 216 = 65536. Also 
number of snapshots taken is 10, 20 and 30. For each 
snapshot the code is run for N times and results are tabulated. 

A. Case 1: No bias in Sensor Kinematics 

Under no bias conditions and with the initial position and 
velocity of receivers as mentioned, emitter localisation is 
evaluated. Results is shown in Table II for 10 snapshots, 
Table III for 20 snapshots and Table IV for 30 snapshots, all 
at varying signal lengths.  

It is observed that at a given snapshot and varying the 
number of samples (N) for each increment of snapshot, 
output emitter location as well as localisation accuracy (in 
metres) increases. By increasing the number of snapshots 
also for corresponding signal lengths N, the output emitter 
location as well as localisation accuracy increases. Accuracy 
of 100 m is obtained for 216 samples and at 30 snapshots. 
Simulations were not carried beyond the signal length of 216 
as it was time consuming. Three dimensional (3D) CAF-map 
for signal lengths N=213, 214 and 216 each at 30 snapshots is 
shown in Figs. 1, 2 and 3 respectively. Here x-axis, y-axis 
represent the output emitter location coordinates and z-axis 
represents the CAF peak value. As apparent from these 
figures, at higher number of samples (216) and 30 snapshots, 
CAF peak is higher and more sharp with less side lobes and 
less noise floor indicating greater geolocation accuracy. 
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Table- II. Estimated Emitter Location under no bias in 
sensor kinematics at 10 snapshots 

Input Output 
No of 

sample
s 
of 

signal 
(N) 

Emitter 
Locatio
n (km) 

CAF 
Peak 

Emitter 
Location 

(km) 

Localisatio
n accuracy 

(m) 

213 
(11,11,0

) 
7.748e3 (9.5,12.5,0) 2121.32 

214 
(11,11,0

) 
20.745e

3 
(11.4,10.6,0

) 
565.7 

216 
(11,11,0

) 
67.398e

3 
(11.1,10.9,0

)  
141.4 

Table- III. Estimated Emitter Location under no bias 
in sensor kinematics at 20 snapshots 

Input Output 
No of 

sample
s 
of 

signal 
(N) 

Input 
Emitter 
Locatio
n (km) 

CAF 
Peak 

Output 
Emitter 
Location 

(km) 

Localisatio
n accuracy 

(m) 

213 
(11,11,0

) 
11.370e

3 
(9.7,12.5,0) 1984.94 

214 
(11,11,0

) 
31.268e

3 
(11.1,10.6,0

) 
412.31 

216 
(11,11,0

) 
122.48e

3 
(11,10.9,0) 100 

Table- IV. Estimated Emitter Location under no bias 
in sensor kinematics at 30 snapshots 

Input Output 
No of 

sample
s 
of 

signal   
(N) 

Input 
Emitter 
Locatio
n (km) 

CAF 
Peak 

Output 
Emitter 
Location 

(km) 

Localisatio
n accuracy 

(m) 

213 
(11,11,0

) 
13.568e

3 
(11.8,12.1,0

) 
1320.8 

214 
(11,11,0

) 
44.768e

3 
(11.1,10.8,0

) 
223.6 

216 
(11,11,0

) 
126.71e

3 
(11,10.9,0) 100 

 

 
Fig. 1. CAF plot at N=213 and 30 snapshots 

 

 
 

Fig. 2. CAF plot at N=214 and 30 snapshots 
 

 
 

Fig. 3. CAF plot at N=216 and 30 snapshots 

B. Case 2: Bias in Sensor Kinematics 

Now we will examine the effect of bias on emitter location 
using joint TDOA and FDOA measurements. Additive White 
Gaussian Noise (AWGN), with zero mean and random in 
nature is added to the position and velocity of the sensor. 
SNR is set to 30 dB. Under biased condition, the position and 
velocity considered are 1= + = +p p p p and

2= + = +p p p p , where 1  and 2  are additive white 

Gaussian noise in position and velocity respectively. Under 
this condition experiment is conducted and results are 
tabulated. This is shown in Table-V. As the maximum 
accuracy was obtained at 30 snapshots only, only this 
scenario is considered at varying number of samples. At less 
number of samples, TDOA and FDOA estimation error is 
large because there is divergence or convergence to form 
local minimum. Leading to less localisation accuracy. 
However as expected under bias conditions the proposed 
algorithm still achieves a fairly optimal geolocation 
accuracy. 
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Table- V. Comparison localisation accuracy without 
bias and with bias in sensor kinematics. 

 

No of 
snap-shots 

No of 
samples of 
signal (N) 

Localisation accuracy 
(meters) 

Without 
bias 

With bias 

30 

213 1320.8 1513 

214 223.6 800 

216 100 200 

V. CONCLUSION 

In this paper we have proposed an algorithm for geolocating 
a stationary RF emitter observed that is steered by a set of  
moving receivers placed on high altitudes. CAF map algorithm 
is utilized for estimating the geolocation accuracy using joint 
TDOA and FDOA measurements. Using this method, the 
peaks obtained from the magnitude of CAF surface is directly 
mapped on to the geographic x-y coordinates.  We have 
simulated for geolocation accuracy by considering known 
sensor kinematics under no bias condition and also when there 
is random bias introduced in sensor position and velocity. In 
both the conditions, number of snapshots and signal length are 
varied. In simulation results it is seen that higher accuracy is 
obtained for larger signal collection times. At less number of 
samples, localization accuracy is also less. It is concluded that 
even if a bias exist in sensor kinematics, deviation in location 
accuracy is of order of few meters only. Bias cannot be ideally 
eliminated, but in future works attempts will be made in 
devising algorithms to reduce it to minimal. 
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NOMENCLATURE 

 
B      Signal Bandwidth  

cf
    

 Carrier frequency 

sf     sampling frequency 

j     Number of receivers 

k      bin number 
M     Number of  receivers 
N     Total number of samples 

1n     AWGN at receiver 1 

2n     AWGN at receiver 2 

1p     Initial position vector of receiver 1 

2p     Initial position vector of receiver 2 

1p     Initial velocity vector of receiver 1 

2p     Initial velocity vector of receiver 2 

( )e tp    position vector of the emitter 

jp     Bias in the receiver j position 

jp     Bias in the receiver j velocity 

3 1     Real 3D space 

s(t)     Signal transmitted by emitter 

1s (t)    Signal received by sensor 1 

2s (t)    Signal received by sensor 2 

T      matrix transpose 

sT     sampling period 

0 0 0
t t tx , y ,z   Initial coordinates of receiver 

e e e
t t tx , y ,z   coordinates of emitter 

      Doppler Shift 

     Initial vector of AWGN without bias in position     

 and velocity 
     Vector of AWGN without bias in position and      

     velocity 
 
     Vector of AWGN with bias in position and       

     velocity 
 
     Shift in the signal 

      Time delay 

m̂     Maximum Time Delay 

m̂     Maximum frequency 

1     Random bias at receiver 1 

2     Random bias at receiver 2 
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