Journal article Open Access
Boby Siswanto; Johan M. Kerta; Ranny; Devwanto D. Nugroho
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="URL">https://zenodo.org/record/5565750</identifier> <creators> <creator> <creatorName>Boby Siswanto</creatorName> <affiliation>Informatics, Bina Nusantara University, Bandung, Indonesia.</affiliation> </creator> <creator> <creatorName>Johan M. Kerta</creatorName> <affiliation>Informatics, Bina Nusantara University, Bandung, Indonesia.</affiliation> </creator> <creator> <creatorName>Ranny</creatorName> <affiliation>Informatics, Bina Nusantara University, Bandung, Indonesia.</affiliation> </creator> <creator> <creatorName>Devwanto D. Nugroho</creatorName> <affiliation>Informatics, Bina Nusantara University, Bandung, Indonesia.</affiliation> </creator> </creators> <titles> <title>Automatic Detection of Carbon Dioxide Concentration using IoT</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2020</publicationYear> <subjects> <subject>Carbon dioxide measurement, Internet of Things, Automatic Comparison, Classroom.</subject> <subject subjectScheme="issn">2249-8958</subject> <subject subjectScheme="handle">D6653049420/2020©BEIESP</subject> </subjects> <contributors> <contributor contributorType="Sponsor"> <contributorName>Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP)</contributorName> <affiliation>Publisher</affiliation> </contributor> </contributors> <dates> <date dateType="Issued">2020-04-30</date> </dates> <language>en</language> <resourceType resourceTypeGeneral="JournalArticle"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5565750</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="ISSN" relationType="IsCitedBy" resourceTypeGeneral="Text">2249-8958</relatedIdentifier> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsIdenticalTo">10.35940/ijeat.D6653.049420</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Inside a classroom inhabited by students, carbon dioxide (CO2 ) will be produced. Number of students and inhabiting time will affect the carbon dioxide concentration. This research implementing Internet of Things (IoT) devices to measure carbon dioxide level inside a classroom. Measurements taken are comparing carbon dioxide level of student activity between exam class and regular learning class. On 100 minutes of measurement found that carbon dioxide concentration inside exam class 5% higher than carbon dioxide concentration inside regular learning class with the same number of inhabitants.</p></description> </descriptions> </resource>
Views | 23 |
Downloads | 21 |
Data volume | 13.2 MB |
Unique views | 22 |
Unique downloads | 18 |