Conference paper Open Access

Early detection of properties at risk of blight using spatiotemporal data

Blancas Reyes, Eduardo; Helsby, Jennifer; Rasch, Katharina; van der Boor, Paul; Ghani, Rayid; Haynes, Lauren; Cunningham, Edward P.


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Social Good</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Urban Blight</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Supervised Learning</subfield>
  </datafield>
  <controlfield tag="005">20190410033904.0</controlfield>
  <controlfield tag="001">556510</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">15-16 September 2016</subfield>
    <subfield code="g">Data for Policy</subfield>
    <subfield code="a">Data for Policy 2016 - 'Frontiers of Data Science for Government: Ideas, Practices and Projections'</subfield>
    <subfield code="c">Cambridge, United Kingdom</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Chicago</subfield>
    <subfield code="a">Helsby, Jennifer</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Chicago</subfield>
    <subfield code="a">Rasch, Katharina</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Chicago</subfield>
    <subfield code="a">van der Boor, Paul</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Chicago</subfield>
    <subfield code="a">Ghani, Rayid</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">University of Chicago</subfield>
    <subfield code="a">Haynes, Lauren</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">City of Cincinnati, Dept. of Buildings and Inspections</subfield>
    <subfield code="a">Cunningham, Edward P.</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">184757</subfield>
    <subfield code="z">md5:cd205dce484b09c80a850e248682b0d0</subfield>
    <subfield code="u">https://zenodo.org/record/556510/files/34_Blancas.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">http://dataforpolicy.org/about/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2017-04-21</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-dfp17</subfield>
    <subfield code="o">oai:zenodo.org:556510</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">University of Chicago</subfield>
    <subfield code="a">Blancas Reyes, Eduardo</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Early detection of properties at risk of blight using spatiotemporal data</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-dfp17</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">http://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Urban blight is a domino effect phenomenon: properties first fall into disrepair, then land values decline, and finally home abandonment and vacancy follows. This effect spreads from one home to another in the neighborhood, depressing values of nearby properties [8]. In partnership with the City of Cincinnati Office of Performance and Data Analytics and their Department of Buildings &amp;amp; Inspections, we used geographical data from the city and historical data on home inspections to train a Machine Learning model to provide proactive suggestions for property inspections targeted at catching blight early. Our best model reaches a precision of 70% for the top 6,000 predictions. This is a significant improvement over the discovery rate of the current approach, where 60% (in 2015) of citizen complaints result in the discovery of code violations. While our model can have a huge impact in tackling the blight problem, without field validation, the model can potentially have unintended consequences and ethical issues, such risks are being taken into account for the development of the project.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.603933</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.556510</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
19
11
views
downloads
All versions This version
Views 1919
Downloads 1111
Data volume 2.0 MB2.0 MB
Unique views 1818
Unique downloads 1010

Share

Cite as