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Abstract

3xlog x+5 + log x
8xmX y/x+1.2xlog x+2 log(x+Cx vxxlog log log x)
constant C independent of x. We prove that the Riemann hypothesis is false when there exists

some number y > 13.1 such that for all x > y the inequality v(x) < 0 is always satisfied.
We know that the function v(x) is monotonically decreasing for all sufficiently large numbers
x > 13.1. Hence, it is enough to find a value of y > 13.1 such that v(y) < O since for all x > y
we would have that v(x) < v(y) < 0. Using the tool gp from the project PARI/GP, we note that
v(100!) = -2.938735877055718770 E-39 < O for all C > m. In this way, we claim that the
Riemann hypothesis could be false.

We define the function v(x) = — 1 for some positive
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1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part % [1]. Let N, =
2x3x5x7x11x---X p, denotes a primorial number of order n such that p,, is the n” prime
number. Say Nicolas(p,) holds provided

1_[ Ll > ¢’ X loglog N,,.
q-
qINn

The constant y ~ 0.57721 is the Euler-Mascheroni constant, log is the natural logarithm, and
q | N,, means the prime number ¢ divides to N,,. The importance of this property is:

Theorem 1.1. [2], [3]. Nicolas(p,) holds for all prime numbers p, > 2 if and only if the
Riemann hypothesis is true.

In mathematics, the Chebyshev function 6(x) is given by
0(x) = Z log p
psx

where p < x means all the prime numbers p that are less than or equal to x. We know this
property for this function:
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Theorem 1.2. [4]. There are infinitely many values of x such that
6(x) > x + C x vx x logloglog x
for some positive constant C independent of x.
We also know that

Theorem 1.3. [5]. If the Riemann hypothesis holds, then

= 1
e Xl—[ q - <3>< ogx+5
log x g-1 8 XX yx

q<x

for all numbers x > 13.1.

Let’s define H = y — B such that B ~ 0.2614972128 is the Meissel-Mertens constant [6]. We
know from the constant H, the following formula:

Theorem 1.4. [7].
1
Z(log(i)— -) =y-B=H.
g-1" q

q

For x > 2, the function u(x) is defined as follows
q 1
u(x) = Z log(—=—)~ .
= q - q
We use the following theorems:

Theorem 1.5. [8]. For x > —1:
L log(1 + x)
x+17 ’

Theorem 1.6. [9]. For x > 1:

1
log(1 + — .
og( x)<x+0.4

Let’s define:
1
o(x) = [Z — —loglogx — B].
q<x q

Definition 1.7. We define another function:

@(x) = [Z 411 — log log 8(x) — B] .

q<x

Putting all together yields the proof that the inequality @(x) > u(x) is satisfied for a number
x > 3 if and only if Nicolas(p) holds, where p is the greatest prime number such that p < x.
In this way, we introduce another criterion for the Riemann hypothesis based on the Nicolas
criterion. Using this new criterion, we claim that the Riemann hypothesis could be false.
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2. Results

Theorem 2.1. The inequality w(x) > u(x) is satisfied for a number x > 3 if and only if Nicolas(p)
holds, where p is the greatest prime number such that p < x.

Proof. We start from the inequality:
@ (x) > u(x)

which is equivalent to

1
- —loglog 8(x) — log(—1—y - =
(Zq og log 6(x) ] Z(og( ) q)

q<x q>x

Let’s add the following formula to the both sides of the inequality,

1
Z(log( ql)——)
q- q

g<x
—loglogb(x)- B> H

and due to the theorem 1.4, we obtain that

Z log(

g<x
because of
H = ;(log( - —) ;(log(qf - é)
and
D log(—> = Z > (log< - —)
g<x =1 =

Let’s distribute it and remove B from the both sides:

Z log(

g<x

) > vy + loglog 6(x)

since H =y — B. If we apply the exponentiation to the both sides of the inequality, then we have
that

l_[ a_. e’ x log 6(x)
q-1

q<x

which means that Nicolas(p) holds, where p is the greatest prime number such that p < x. The
same happens in the reverse implication. [

Theorem 2.2. The Riemann hypothesis is true if and only if the inequality w(x) > u(x) is satisfied
for all numbers x > 3.

Proof. This is a direct consequence of theorems 1.1 and 2.1. O

Theorem 2.3. If the Riemann hypothesis holds, then

3xlogx+5 N log x
8xmx Vx+12xlogx+2 logé(x)

for all numbers x > 13.1.



Proof. Under the assumption that the Riemann hypothesis is true, then we would have

(1+3><10gx+5)

9 y
—— < e’ xlogx X -
l_[ -1 & 8 XX Vx

q<x q

after of distributing the terms based on the theorem 1.3 for all numbers x > 13.1. If we apply the
logarithm to the both sides of the previous inequality, then we obtain that

Zlog( q )<y+loglogx+log(1 +

3><10gx+5)
q<x q_l

8 XX Vx

That would be equivalent to

1 q 1 3xlogx+5
-+ log(——)— —| <y +loglogx +
; ;( g7 q) O R X Va+ 12x logx +2

where we know that

log(1+3X10gx+5)< 1
: 3xlogx+5
T 8xmxX Vx+04x(3xlogx+5)
3xlogx+5

8xmX Vx+12xlogx+2

according to theorem 1.6 since % > 1 for all numbers x > 13.1. We use the theorem 1.4 to
show that

1
Z(log( 1 )——)=H—u<x>
g-1" ¢

q<x

and y = H + B. So,

3xlogx+5

1
H—u(x)<H+B+log10gx—z“;+8X7T>< Vx+12xlogx+2

q<x
which is the same as

3xlogx+5

H - < H-6(x)+ .
u(z) ) XX Vx+1.2x%xlogx+2

‘We eliminate the value of H and thus,

3xlogx+5
8xmx Vx+1.2xlogx+2

—u(x) < =d6(x) +

which is equal to
3xlogx+5

8xmX Vx+12xlogx+2
4

u(x) + > 8(x).



We know from the theorem 2.1 that @w(x) > u(x) for all numbers x > 13.1 and therefore,

3xlogx+5
8xmx Vx+1.2xlogx+2

w(x) + > 0(x).

Hence,
3xlogx+5

8xmx Vx+1.2xlogx+2

> loglog 6(x) — loglog x.
Suppose that 6(x) = € X x for some constant € > 1. Then,

loglog 6(x) — loglog x = loglog(e X x) — loglog x
= log (log x + log €) — loglog x

1
= log(logxx 1+ E) —loglog x
log x

1
= loglog x + log(1 + E) —loglog x
log x

loge
=log(1 + .
og( Iog )
In addition, we know that
log e log €
log(1 + >
og( log x) ~ log6(x)
using the theorem 1.5 since }g% > —1 when € > 1. Certainly, we will have that
loge
log(1 + loge) > logx  _ log e _ log e '
log x };’% +1 loge+logx logf(x)

Thus,
3xlogx+5 loge

> .
§xmx Yx+12xlogx+2 logé(x)

If we add the following value of 1(:;%9(); 5 to the both sides of the inequality, then
3xlogx+5 N log x S loge N logx  loge+logx logf(x)
8xax Vx+12xlogx+2 logfx) logé(x) logh(x) log 6(x) log 6(x)
We know this inequality is satisfied when 0 < € < 1 since we would obtain that 101:;)% > 1

Therefore, the proof is done.

Theorem 2.4. If there exists some number y > 13.1 such that for all x > y the inequality

3xlog x+5 log x . . L .
<
Bxmx var L 2xiognr2 T oatirCx Vaxlogloglog ) = 1 is satisfied for some positive constant C independent

of x, then the Riemann hypothesis should be false.

Proof. From the theorem 1.2, we know that there are infinitely many values of x such that

6(x) > x + C x Vx x logloglog x
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for some positive constant C independent of x. That would be equivalent to
log 6(x) > log(x + C x vx x logloglog x)

and so,
1 1

<
logf(x)  log(x + C X vx x logloglog x)

for all numbers x > 13.1. Hence,

log x < log x
logf(x)  log(x + C x vx xlogloglog x)’

If the Riemann hypothesis holds, then

3xlogx+5 N log x o1
8xmX yx+12xlogx+2 log(x+ C x vxxlogloglog x)

for those values of x that complies with
6(x) > x + C X Vx x logloglog x

due to the theorem 2.3. By contraposition, if there exists some number y > 13.1 such that for all
x >y the inequality

3xlogx+5 N log x <1
8xax Vx+12xlogx+2 log(x+C X vxxlogloglogx)

is satisfied for some positive constant C independent of x, then the Riemann hypothesis should be
false, because of there are infinitely many values of x which satisfy the inequality in the theorem
1.2 and comply with x > y no matter how big could be y. O

ogs , . _ 3xlog x+5 log x _
Definition 2.5. Let’s define the function v(x) = — Vel 2xiogni2 T logriCx vaxloglog o) 1 for

some positive constant C independent of x.
Theorem 2.6. The Riemann hypothesis could be false.

Proof. From the theorem 2.4, we know that the Riemann hypothesis is false when there exists
some number y > 13.1 such that for all x > y the inequality v(x) < 0 is always satisfied.
We know that the function v(x) is monotonically decreasing for all sufficiently large numbers
x > 13.1. Let v/(x) be the derivative of v(x). We can check the value of v/(x) from this web
site https://www.wolframalpha.com/input and see that v/ (x) is lesser than zero for all sufficiently
large numbers x > 13.1. Indeed, a function v(x) of a real variable x is monotonically decreasing
in some interval if the derivative of v(x) is lesser than zero and the function v(x) is continuous
over that interval [10]. In this way, it is enough to find a value of y > 13.1 such that v(y) <
0 since for all x > y we would have that v(x) < v(y) < 0. We can check that v(100!) =~
-2.938735877055718770 E-39 < 0O for all C > m using the tool gp from the web site
https://pari.math.u-bordeaux.fr. Consequently, we claim that the Riemann hypothesis could be
false. O



Appendix

We use the following input:

(3*log(x)+5)/(8*pi*sqri(x)+1.2*log(x)+2)+log(x)/log(x+C*sqrt(x)*log(log(log(x))))-1

from the web site https://www.wolframalpha.com/input. Besides, we use the following input into
a single command line:

(3*10g(100!)+5)/(8*3.14%sqrt(100!)+1.2*log(100!)+2)

+log(100!)/log(100!+(1/1000000!)*sqrt(100!)*log(log(log(100!))))-1

using the tool gp from the project https://pari.math.u-bordeaux.fr.
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