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Abstract

The field of autonomous robotics has made significant progress with the advent of
learning methods that have been successfully applied in robotics and have achieved
tremendous accuracy. Today, we can observe the successful application of classical
machine learning, computer vision, and reinforcement learning in various robotic
tasks like path planning, perception, locomotion, grasping, manipulation etc. But
the big question remains, "Is robotics ready for the real world?" While it is true that
we have now successfully deployed some robots in the real world, with some even
interacting and collaborating with humans, many tasks remain difficult for robots to
accomplish. In this survey paper, we focus on robot grasping, which is a significant
challenge for robots and hinders their successful deployment in the real world. Our
paper aims to review, categorize, and describe research in robotics focusing on
robot grasping, the role of robot grippers and learning methods explored towards
achieving intelligent control of robots when executing a grasping task.

1 Introduction

Robots are increasingly used in environments where grasping and manipulation of objects is required.
In recent years, however, they have also found their way into homes, where objects such as books,
balls, and toys need to be picked up and placed, and in production lines, where products such as
packaged goods and mechanical parts need to be picked up and moved [37] [64], creating the need
to improve such tasks. It is believed that research into robotic grasping and manipulation began as
early as the 1970s and was popularized in various classic science fiction films. Many of these robots
are indistinguishable from their human counterparts, except that they had not yet perfected their
hands [[14]. To date, numerous researches have been conducted in the field of robotics with various
subcategories and focuses, all aimed at improving their efficiency on human processes. Among these
various research areas of robotics, grasping and manipulation offers significant potential in both
industrial and domestic settings. Other important applications include medical specimen collection,
autonomous transportation and delivery of medical goods, rapid and autonomous manufacturing of
medical and healthcare products, etc., to assist humans in jobs that require human-like dexterity. This
became even more urgent with the advent of COVID-19.

In grasping and manipulation task, a robot is expected to efficiently and effectively grasp an object
and then manipulate it. The goal of grasping is to ensure that the robot can fully grasp an object with
its robotic hand. The key indicator of success here is the identification and firm grasping ( picking
) of the object, which means that the uncertainties related to the position, geometry, or nature of
the object are efficiently removed and then controlling the movement of the grasped object is as
simple as controlling the hand movement. On the other hand, manipulation means the application
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of force or motion to the same object to change its state and orientation in an environment [59]. In
contrast to robot grasping and manipulation, robotic perception in itself grounds the use of robots in
the real world. Like human sensory organs responsible for tasks such as sight, hearing, touch, taste,
and smell, it is crucial for robots to be able to perceive the real world and its dynamics if they are
to autonomously assist humans. Robotic perception has achieved success in tasks such as vision,
haptics, tactile perception, and hearing [4]]. At first glance, it is not clear how perception is related to
the tasks of grasping and manipulation.

It is well known that robots have speed and strength far superior to the human hand, but they cannot
reliably grasp unfamiliar objects. This limitation is due to the varying shapes, sizes, and textures of
objects, which makes it difficult to build superintelligent machines for household, manufacturing,
and security applications. [4] explains that this difficulty stems from the inherent uncertainty in the
robot’s physics, perception, and control. Virtually all applications, from manufacturing to service to
security, would benefit from robots capable of grasping any object with a wide range of shapes and
sizes, from rigid to deformable, and under a variety of frictional conditions. Yet despite over 40 years
of research, this problem remains unsolved. One plausible reason is that robots rely on simplification
of their environment, such as a specific arrangement of objects or strong backlighting that allows
better perception and localization of the object or subject. Therefore, to alleviate this problem, we
need to enable robots to "see" by developing robust perception systems to localise objects and plan
robust grasping positions on objects [49].

The field of robot grasping, manipulation and perception is generating so much interest in the industry
that e-commerce giant Amazon has challenged researchers in an annual competition for the past three
years. The Amazon Robotics Challenge asks researchers to design and build a robot that can sort
items from bins and assemble them into boxes for a customer’s order. The items are varied, ranging
from bottles and bowls to stuffed animals and sponges. They are initially jumbled, making it difficult
to identify objects and grasp them mechanically.

Because of the amount of research that has been done in this area, it starts to become tedious for late
entrants. Our survey aims to ease the entry of researchers into the field and to promote continuity of
ongoing research. In section 2, explore various robot gripper and their applications while section 3
discusses the ways in which grasp learning has been employed.

2 Robot Grippers

Design, analysis and control of grippers are essential aspects of robotic grasping and manipulation.
The type of robotic gripper plays an important role in the success of gripping. For robotic grippers
to be successful in small-scale manufacturing, they must have the same adaptability and sensitivity
as human hands. These robots do not necessarily mimic the human hand, but it is often helpful
to analyse their dynamics during grasping and manipulation to better understand the relationship
between the task and the solution provided by the hand [6].

Much research has been conducted in the empirical and medical literature on the grasping abilities of
the human hand. This research assumes six types of grasping: cylindrical, fingertip, hook, palmar,
spherical, and lateral. The categorization led to the assignment of grips to partial shapes, which is
an essential basis for the design of robotic hands [41][9][56]. Today, there are various types/designs
of grippers developed and used for industrial applications. The major categories of grippers in
industry today are servo electric grippers, two finger/jaw grippers, three finger/jaw grippers, adaptive
or multi finger grippers, magnetic grippers, soft and flexible grippers, jamming grippers, hydraulic
grippers, pneumatic grippers, vacuum grippers etc. [S0]. Nevertheless, research on grippers with
higher efficiency and effectiveness is still ongoing, as many use cases remain challenging for existing
technologies.

2.1 Two-finger and Three-finger Grippers

Two and three-fingered grippers are typically used in manufacturing for small jobs. In two-finger
grippers, the end effector has two parallel jaws with flat edges. They open and close, clamping onto
the part and holding it steady with force. Three-finger grippers have three fingers or jaws that close
around objects and hold them in the centre. They are usually used for round or cylindrical objects.



Two-finger grippers In 2014, students from Harvard and Yale developed the iHY robotic hand
[[L7]]. It had two fingers and an opposable thumb powered by five motors. Each finger contained
proximal and distal links that connected the finger to the base to the fingertip. Heavy-duty elastic
joints were used to provide flexibility and durability, which allowed for better grasping of objects.
Objects ranging from small ball bearings to golf balls to heavy drills can be held by these iHY
hands. Gripping force was provided by cable tendons that wrapped around the object and gripped it
tightly [17]. The iHY two-finger gripper was extended to a wheeled mobile robot used in arduous,
hazardous, and dirty environments. These robots have a mobile platform, robotic arm and gripper for
pick-and-place tasks that can be used in any industry. To make the modifications work, the stress,
deformation, and torque requirements of Von-Mises were taken into account in the computational
analysis of the gripper during development [3].

A different direction for the design of a two-fingered robotic hand was taken in 2011 [26], where a
robotic hand would be teleoperated by a human, focusing on the haptic properties of the robotic hand.
The system would relay the reaction force measured in the robotic hand to an operator. The team
developed a force feedback device that sends a reaction force to the distal segment of the operator’s
thumb, middle finger, and basipodite of the middle finger when the robotic hand grasps an object.
While several works continues on the design of these grippers, other researchers have made efforts to
optimise the dimensional synthesis and kinematic configuration of the mechanisms [3] [27].

Three-finger grippers As mentioned earlier, three-finger grippers expand the task of grasping
and allow for more versatility and fixable adaptive control. Their hands adapt to a variety of part
geometries and sizes, including cylindrical and circular objects [22]. [36] [22] [63] [S1] [38] have
done work to extend the realities and successes of two-finger grippers to three-finger grippers in
terms of their design, fabrication and control.

2.2 Other Robot Grippers

In addition to robots with two and three grippers, we also have Adaptive grippers and Vacuum-
based grippers.

Adaptive grippers These grippers are often made of malleable, soft materials as they are usually
very flexible and have multiple fingers designed for gripping round, irregular, or delicate objects.
They can be used for food production lines or for handling small, fragile objects. While adaptive
grippers with 4-5 fingers have proven to be a prosthetic for the human body, it is still a challenge
to use them for a robot. This is because they often lack precise repeatability and usually cannot
handle heavy payloads, as they often integrate many kinematic degrees of freedom and thus complex
mechanisms that must be controlled to grasp and manipulate objects [24]. For this reason, these types
of grippers are not very popular; they are simply not yet ready for industry [24].

A new direction in adaptive grippers is soft fingers (related to the field of ’Soft Robotics’ ), which
usually have multiple fingers. An early approach using anthropomorphic hands can facilitate grasping
by intrinsic compliance, allowing them to adapt to different objects. This involved embedding tubes of
liquid metal in a silicone sheet wrapped around the finger. The strain on the finger is monitored using
the electrical resistance of the tubes, and machine learning is used to make inferences about what is
happening to the finger [7][[LS]]. In [30] research, a new flexible hybrid pneumatic actuator (FHPA)
was proposed that achieves a better balance between required flexibility and necessary stiffness with
large grasping force, low cost and light weight.

Meanwhile, [12] [61] [47] proposed a non-anthropomorphic grasping method that reduces the
complexity of grasping and simplifies grasping of diverse objects in different poses without detailed
knowledge of the object geometry. They usually require the actuation of fewer degrees of freedom for
grasping, which is possible because their deformability ensures that the contacted object dominates
their shape.

Vacuum-based grippers Work with Bernoulli Principle, by creating a high-velocity flow between
the vacuum cup and the object surface, creating a vacuum that lifts the object. They use the difference
between the air pressure in the gripper and the external air pressure to lift, hold and move objects
[18] [43]. One problem with vacuum grippers is the lack of details about the parameters that affect
sealing and force transmission behaviour. Uncertainties such as leakage or the unknown force



transmission behaviour of vacuum grippers make it necessary to estimate the process-specific loads
and therefore overdesign the system by a certain safety margin. Therefore, it is crucial to understand
the exact deformation behaviour of vacuum grippers due to a specific load condition [21]]. An early
approach to address these issues was to predict the maximum suction force using finite element
simulations [16]. While most previous research on vacuum grippers focused on static (non-numerical)
computational methods, new directions are moving towards dynamic predictive models that can be
used for model-based robot trajectories and vacuum gripper design. One of these models proposed
an experimental modelling method that considers the dynamic deformation behaviour of vacuum
grippers in interaction with the specific gripper-object combination [10]].

3 Grasping Learning Methods

The act of grasping is one of the biggest problems in robotics due to the complexity of perception,
planning and execution in complex and dynamic environments. Yet, in many applications, it remains
one of the most desired capabilities for a fully functional robotic system. Consequently, this is an area
that has attracted and continues to attract a great deal of interest and research over the past decades,
which has resulted in many advances and an active area of research and development [[1]. Approaches
to the grasping problem can be mainly divided into two main categories: an analytical approach and
a learning-based approach.

3.1 Analytic Approach

The analytical approach to grasping involves the development of computational algorithms with
low data dependence that autonomously control a robotic hand to perform tasks. It relies on the
availability of a physically-based, algebraic description of an object in space, which are often
approximations and sometimes simplifications of the real object or environment [48]]. The method
aims to achieve dexterity, balance, stability, and dynamic behaviour in the robot hand, and algorithms
are used to achieve all four goals. The algorithm dexterity involves solving an unconstrained linear
programming problem with an objective function representing one or more known dexterity measures.
Simultaneously, equilibrium is achieved by algorithms that balance the positivity, friction, and torque
constraints on the fingers of the robot hand. Stability algorithms aim to achieve positive definite
grasp impedance matrices by solving the required fingertip impedances, while dynamic behaviour
algorithms determine fingertip impedances that, when achieved, lead to a desired dynamic behaviour
(58]

Despite these efforts to implement a reliable grasping system, analytical approaches still do not
capture all aspects of the intrinsic properties of the object. The solutions do not account for the
variations that arise when contact models are rich or environments are unstructured and dynamically
changing. Moreover, it is difficult to derive an inverse model (inverse kinematic model of the arm)
needed for forward or open-loop control, so it is implemented by a local inversion of a forward model
[45]].

3.2 Data-driven or Empirical approach

The data-driven approach to grasping has gained much popularity recently. This is thanks to advances
and discoveries in deep learning and self-supervised methods, especially their ability to generalize
to unseen objects and dynamically changing environments. Here, the robots does not employ prior
knowledge of the object’s features, and learning is done in an end-to-end fashion [55] [25]. They
are mostly empirically evaluated and do not necessarily have to respect physical and dynamic
constraints compared to analytical approaches where these constraints are manually modeled. Data-
driven methods can be divided into supervised and unsupervised (reinforcement learning) learning
approaches. However, there are two main pipelines applied for successful execution of grasping:
model-free and model-based pipelines.

Model-based In this approach, specific physical and geometric knowledge about the object is
used to solve the grasping task. Typically, this is a three-stage process involving estimation of the
object pose, determination of the grasp pose, and finally path planning (which includes kinematic
considerations). In the model-based approach and in the context of object pose estimation, the (visual)
perception of a robot’s environment and the object is of great importance for the success of the



robot’s grasping task. In essence, identifying objects and the recovery of their pose is crucial since
the recognition must be done in real time and the texture, shape and appearance of the objects are
dynamic. However, occlusions around the object, changing lighting conditions, and cluttered scenes
make it even more difficult for the robot to accurately identify the pose of an object [8][46][25](52].

Model-free Here, the model directly suggests a candidate grasp and would generalize to unseen
objects. The model-free process eliminates the need for object pose estimation and can understand
the dynamics of an object as a result of the generalization of the models.

For each component of the pipeline (object pose estimation, grasp pose determination, and path
planning), researchers have applied supervised and unsupervised algorithms that use data to execute
the grasp.

3.2.1 Supervised

In the discriminative approach of supervised learning, samples from grasp candidates are collected
and a neural network is trained to select the grasp with a higher probability of success. While it
can be computationally intensive to train an appropriate model to support grasping, it promises
generalization and good performance for unseen data. In 2017, Leitner’s ACRV team won Amazon
Robotics Challenge with a robot they named Cartman [29]]. The robot has two tools for picking up
objects: a gripper with two parallel plates (end effector) and a suction cup with a vacuum pump. For
each object the robot encounters, it can specify which tool it wants to use for the task. In conjunction
with an RGB-D camera, Leitner used a machine learning approach to semantic segmentation that
accesses color and depth to get a good result on the challenge. Once Deep Learning segmentation is
used to find a cluster of pixels that represent the object, the depth detection feature of the camera
helps the robot figure out how to grasp the object. [29] [14].

As deep learning methods has progressed over the past few years and more sophisticated algorithms
developed, the possibilities of grasping and manipulation with these algorithms have been further
explored. One practical approach to grasping that is now being used in industry is learning by
demonstration. The human provides multiple demonstrations from which a neural network learns
and the robot can adapt to variations (generalization) of the same problem. This is in contrast to
programming the robot to perform specific actions. Learning by demonstration is not new, but the
use of deep learning and model-based reinforcement has increased the success rate [14] [35] [2]] [1L]
[L3].

A major improvement over Cartman is the software Dex-Net, which is virtually trained to grasp
objects in random poses on a table using a physics simulation. The approach reduces data collection
time by simulating millions of grasps very quickly (synthetic dataset). The resulting dataset is used
to train a Grasp Quality Convolutional Neural Network (GQ-CNN) [53] to predict the probability of
success of a grasp. The software allows an industrial robot to pick objects from a stack with a success
rate of more than 90% and can be generalized to various rigid, articulated or flexible objects not seen
during training. [34]] [31]

The Dex-Net framework was further extended to suction grippers and a dual-arm robot where the
policy infers whether to use a parallel jaw or a suction gripper for emptying a cluttered bin. The
Dex-Net system continues to be one of the fastest pickers and is well above the numbers achieved
by the teams at the last Amazon Robotics Challenge [32] [33]]. Other algorithms that have evolved
include FC-GQ-CNN [54], GraspNet [40], QT-Opt RCAN [19], Grasping in the Wild [62]. See more
details in [25]]

3.2.2 Reinforcement Learning (Unsupervised)

In recent years, Deep Reinforcement Learning has promised to improve robot learning and outperform
the results of human experts in several [42]], e.g. in Atari games [39], the game Go [60]. Robotics
researchers have adopted the Deep Reinforcement Learning approach and applied it to various
robotic tasks, including grasping and manipulation. It provides a framework and set of tools for
learning dexterous manipulations from start to finish, directly from raw sensory input. The framework
leverages the representational power of Deep Learning to maximize an agent’s rewards in a simulated
environment. Rewards are mathematical functions that are carefully crafted to drive the actions of
agents in the environment.



[57] presented in their research a deep deterministic policy gradient approach that can be applied to
a robotic arm with numerous degrees of freedom to autonomously grasp objects according to their
classification and a given task. They used *’Only Look Once v5’ for object detection while detecting
a 3D position of the target object with a backward projection. After calculating the angles of the
joints at the detected position using inverse kinematics, the robot arm is moved to the position of the
target object using RL algorithm. Grasping in the Wild, another reinforcement learning approach
for grasping, proposes a new low-cost hardware interface to collect grasping demonstrations from
humans in different environments. It enables closed-loop 6DoF grasping and works in dynamic
scenes with moving objects up to some speed limit [62]]. QT-Opt in [20] demonstrates a variety of
manipulation strategies through a scalable, self-supervised, image-based reinforcement learning. It
uses real-world grasping trials to train a deep neural network Q-function that performs closed-loop
grasping in the real world and generalizes grasping success to 96% for novel objects. An impressive
experiment by OpenAl used automatic domain randomization (ADR) and a custom robotic platform
to solve a Rubik’s Cube of unprecedented complexity with a humanoid robotic hand [44].

3.2.3 Human-in-the-loop Grasping and Manipulation

Another popular research direction in robotic grasping and manipulation that should not be overlooked
is skill transfer, where the skills of a human operator can be used to gain autonomous control. There
is also shared control, where the robot and the human control the same body, tool, or mechanism.
While the idea of shared control is brilliant, it also raises the issue of co-adaptation between humans
and robots, where the two agents can benefit from each other’s capabilities or must adapt to each
other’s behaviour to achieve effective cooperative task performance [23]].

The so-called human-in-the-loop (HitL) framework enables autonomous capabilities that can reduce
the burden on the operator and increase the overall efficiency of the task. While a robot may not be
able to perform some tasks autonomously in a robust and generalizable way, HitL suggests that we can
use autonomy for subtasks that can be performed reliably or require relatively effortless operator input.
Identifying and developing such techniques, investigating their interplay with operator-controlled
subtasks, and analyzing overall efficiency gains are all steps on the path to deployable HitL systems
[28]. Some challenges with this method arise from the use of non-anthropomorphic arms with many
degrees of freedom (DOFs) or limited sensor data about the robot’s environment. However, there
are research works that address this problem. In one of the HitL strategies, the operator directly
controls the 6D pose of a PR2 gripper in real time by clicking and dragging a series of rings and
arrows. Dragging the arrows causes linear motion along the three orthogonal axes, and dragging the
rings causes rotation about the same axes. As the action is performed on the rings and arrows, the
real gripper attempts to track the motion in real time. This is achieved with a J-transposed control law
for the Cartesian position and orientation of the gripper [28]].

4 Conclusion

In this survey paper, we have presented various aspects of robot grasping, we have summarized Robot
Grippers in detail, and we have described the various grasp learning methods used in previous works.
Robot grasping is a very interesting and broad area of research and we have tried to summarize the
previous research works in this field. We must emphasize that this is an actively evolving research
area that encompasses the specifics of robotic grippers and the execution of grasping, aiming at a
fully autonomous and safe robotic system. Therefore, we do not claim to cover all relevant research
in this area.

Robot Gripper Great success has already been achieved in the development of robotic grippers for
specific types of objects. However, much work has been put into developing robotic grippers that
adapt to objects of different shapes. Grippers with multiple fingers promise dexterity equal to that of
humans, but there is the problem of increasing complexity due to the greater degrees of freedom that
must be controlled. Also, the resilience of the gripper and the ability to grasp delicate objects with
dexterity and safety remains a challenge for robots.

Grasp Execution Data-driven learning approaches have shown impressive success rates in grasp-
ing. Compared to the analytical approach, the ability of learning-based models to generalize to
new objects and environments shows that the gap to human accuracy is closing. However, the



determination to capture a wider variety of objects poses a problem caused by increasing complexity.
The reinforcement learning approach to object sensing solves much of this problem, but the use of a
black box model in the real world poses a safety risk.

While more work needs to be done to improve the applicability of robot grasping in the real world,
significant progress has already been made to achieve this goal. In future work, we intend to we aim
to delve deeper into the research works in robot manipulation. As state in earlier, manipulation of
objects by a robot arm involves application of particular forces to the object and a lot of work has
been done in this area.
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