Conference paper Open Access
Garanzha, Vladimir; Kaporin, Igor; Kudryavtseva, Liudmila; Protais, François; Ray, Nicolas; Sokolov, Dmitry
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">mesh untangling</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">variational method</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">polyconvex functional</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">penalty technique</subfield> </datafield> <controlfield tag="005">20211010014836.0</controlfield> <controlfield tag="001">5559040</controlfield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="d">June 21-25, 2021</subfield> <subfield code="g">IMR</subfield> <subfield code="a">29th International Meshing Roundtable</subfield> <subfield code="c">Virtual Conference</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Moscow Institute of Physics and Technology</subfield> <subfield code="a">Kaporin, Igor</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Moscow Institute of Physics and Technology</subfield> <subfield code="a">Kudryavtseva, Liudmila</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Université de Lorraine</subfield> <subfield code="a">Protais, François</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Université de Lorraine</subfield> <subfield code="a">Ray, Nicolas</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Université de Lorraine</subfield> <subfield code="a">Sokolov, Dmitry</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">15874709</subfield> <subfield code="z">md5:32272d8bb145e1076332e70046da0167</subfield> <subfield code="u">https://zenodo.org/record/5559040/files/18-Garanzha.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="y">Conference website</subfield> <subfield code="u">https://www.internationalmeshingroundtable.com/</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-10-09</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="p">user-imr29</subfield> <subfield code="o">oai:zenodo.org:5559040</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Moscow Institute of Physics and Technology</subfield> <subfield code="a">Garanzha, Vladimir</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">On Local Invertibility and Quality of Free-Boundary Deformations</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">user-imr29</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>Mesh untangling is still a hot topic in applied mathematics. Tangled or folded meshes appear in many applications involving mappings or deformations. Despite the fact that a large number of mesh untangling strategies was proposed during the last decades, this problem still persists.</p> <p>Recently we have proposed a numerical optimization scheme [1] that provably untangles 2d and 3d meshes with inverted elements by partially solving a finite number of unconditional minimization problems. The method is robust for fixed boundary mesh untangling problems, and it can be applied to some extent to free boundary untangling. The problem, however, is that the absence of inverted elements does not guarantee invertibility of the deformation (map). The invertibility is lost if the mesh gets caught in a k-covering trap, i.e. in a local minimum of the deformation energy where all mesh elements are not inverted but total angle around certain vertex is above 2<em>&pi;</em>&nbsp;for 2D and above <em>4</em><em>&pi;</em>&nbsp;for 3D. This problem is particularly vexing when partially constrained mesh deformation problems are considered.</p> <p>In this paper we show how to improve the method suggested in [1]. Namely, we show the way to guarantee absence of k-covering folds, and so, the local invertibility is assured. We demonstrate enhanced stability of suggested untangling technique which has a potential to make untangling a routine operation over meshes.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.5559039</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.5559040</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">conferencepaper</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 71 | 71 |
Downloads | 41 | 41 |
Data volume | 650.9 MB | 650.9 MB |
Unique views | 66 | 66 |
Unique downloads | 38 | 38 |