Introduction to the Unix shell for biologists

Konrad U. Forstner

Contents
Motivation and background 1
Work environment and test files 2
The basic anatomy of a command line call 2
How to get help and documentation 2
Bash keyboard shortcuts 3
Files, folders, locations 3
Manipulating files and folder 5
File content - part 1 6
File content - part 2 7
Connecting tools 8
Examples analysis 8
Retrieving data L e e e e e e 8
Counting the number of features L e 9
Calculate the GC contentof agenome e e 9
Multiple sequence alignment withmuscle L 9
Very, very basic scripting 10
What'’s next 10

This work by Konrad Foérstner is licensed under a Creative Commons Attribution 4.0 International License.
Version 1.1
The source code can be found at:

https://github.com/konrad/Introduction_to_the_Unix_Shell_for_biologists/

Motivation and background

In this course you will learn the basics of how to use the Unix shell. Unix is a class of operating systems with many different
flavors including well-known ones like GNU/Linux and the BSDs. The development of Unix and its shell (also known as
command line interface) dates back to the late 1960s. Still, their concepts lead to very powerful tools. In the command
line you can easily combine different tools into pipelines, avoid repetitive work and make your workflow reproducible.
Knowing how to use the shell will also enable you to run programs that are only developed for this environment which is
the case for many bioinformatical tools.

https://creativecommons.org/licenses/by/4.0/
https://github.com/konrad/Introduction_to_the_Unix_Shell_for_biologists/

Work environment and test files

During this course all of you are working on Ubuntu (version 14.04) which is a widely used GNU/Linux distribution. The
systems boots from a USB stick which offers you to run a live system or to install Ubuntu on your computer. We will run
the live mode which will not change the system installed on your PC. After shutting the live system down and removing
the stick everything on the computer will be as before.

To get test data click on the Dash button on the top left of your screen, type terminal and click on the Terminal icon.
You will learn later what you are doing but for the moment just type the following commands into the command line
interface. Do not write the dollar sign($). It just indicates the so called prompt:

$ wget http://data.imib-zinf.net/unix_course_files.tar.gz
$ tar xfz unix_course_files.tar.gz
$ rm unix_course_files.tar.gz

If this URL is not existing anymore you can use the Makefile which is located in the repository of this manuscript to
generate the test data:

$ export GIT_URL=https://raw.githubusercontent.com/konrad
$ wget $GIT_URL/Introduction_to_the_Unix_Shell_ for_biologists/master/Makefile
$ make example_files

The basic anatomy of a command line call

Running a tool in the command line interface follows a simple pattern. At first you have to write the name of the command
(if it is not globally installed it's precise location needs to be given - we will get to this later). Some programs additionally
require parameters and arguments. Parameters usually start with a dash (-). The common pattern looks like this (<>
indicates obligatory items, [] indicates optional items):

<program name> [parameters] [arguments]

An example is calling the program 1s which lists the content of a directory. You can simply call it without any parameter
$ 1s

or with one or more parameters

$ 1s -1
$ 1s -1h

or with one or more arguments

$ 1s test_folder

or with one or more parameters and arguments
$ 1s -1 test_folder

The result of a command is written usually to the so called standard output of the shell which is the screen shown to you.
We will later learn how to redirect this e.g. to the standard input of another program.

How to get help and documentation

Especially in the beginning you will have a lot of questions what a command does and which arguments and parameters
need to be given. One rule before using a command or before asking somebody about it is called RTFM (please check
the meaning yourself). Maybe the most important command is man which stands for manual. Most commands offer a
manual and with man you can read those. To get the documentation of 1s type

$ man 1s

https://en.wikipedia.org/wiki/RTFM

To close the manual use q. Additionally or alternatively many tools offer some help via the parameter -h, -help or
—--help. For example 1s:

$ 1s —-help

Other tools present this help if they are called without any parameters or arguments.

Bash keyboard shortcuts

There are different implementations of the Unix shell. You are currently working with Bash (Bourne-again shell). Bash
has several keyboard shortcuts that improve the interaction. Here is a small selection:

e Ctrl-c - Stop the command

e Ctir-T - Go backward in command history

e Ctlr-!{ - Go forward in command history

e Ctrl-a - Jump to the beginning of a line

e Ctrl-e - Jump to the end of a line

e Ctrl-u - Remove everything before the cursor position
e Ctrl-k - Remove everything after the cursor position

e Ctrl-l - Clean the screen

e Ctrl-r - Search in command history

* Tab - extend commands and file/folder names

Files, folders, locations

Topics:

e 1s

* pwd

e cd

e mkdir

* Relative vs. absolute path

.« -/
In this part you will learn how to navigate through the file system, explore the content of folders and create folders.

At first we need to know where we are. If you open a new terminal you should be in your home directory (we will explain
this below). To test this, call the program pwd which stands for print working directory.

$ pwd
/home/ubuntu

The default user of the Ubuntu live system is called ubuntu. In general each user has a folder with its user name located
inside the folder home. The next command we need and which has been already mentioned above is 1s. It simply lists
the content of a folder. If you call it without any arguments it will output the content of the current folder. Using 1s
we want to get a rough overview of what a common Unix file system tree looks like and learn how to address files and
folders. The root folder of a systems starts with /. Call

$ 1s /
to see the content of the root folder. You should see something like

bin data etc 1lib lost+found mnt proc run srv tmp var
boot dev home 1ib64 media opt root sbin sys usr

There are several subfolders in the so-called root folder (and yes, to make it a little bit confusing there is even a folder
called root in the root folder). Those are more important if you are the administrator of the system. Normal users do
not have the permission to make changes here. Currently your home directory is your little universe in which you can do
whatever you want. In here we will learn how work with paths. A file or folder can be addressed either with its absolute or

relative path. As you have downloaded and decompressed the test data you should have a folderunix_course_files
located in your home folder. Assuming you are in this folder (/home/ubuntu/) the relative path to the folder is simply
unix_course_files. You can get the content of the folder listed by calling 1s like this:

$ 1s unix_course_files

This is the so called relative path as it is relative to the current work directory /home/ubuntu/. The absolute path would
start with a / and is /home/ubuntu/unix_course_files. Call 1s like this:

$ 1s /home/ubuntu/unix_course_files

There are some conventions regarding relative and absolute paths. One is that a dot (.) represents the current folder.
The command

$1s ./
should return the same as simply calling
$ 1s

Two dots (. .) represent the parent folder. If you call

$1s ../
you should see the content of /home. If you call
$1s ../../

you should see the content of the parent folder of the parent folder which is the root folder (/) assuming you are in
/home/ubuntu/. Another convention is that ~/ represents the home directory of the user. The command

$ 1s ~/
should list the content of your home directory independent of your current location in the file system.

Now as we know where we are and what is there we can start to change our location. For this we use the command cd
(change directory). If you are in your home directory /home/ubuntu/ you can go into the folder unix_course_files
by typing

$ cd unix_course_files
After that call pwd to make sure that you are in the correct folder.

$ pwd
/home/ubuntu/unix_course_files

To go back into your home directory you have different options. Use the absolute path
$ cd /home/ubuntu/

or the above mentioned convention for the home directory ~/:

$ cd ~/

or the relative path, in this case the parent directory of
/home/ubuntu/unix_course_files:

$cd ../

As the home directory is such an important place cd uses this as default argument. This means if you call cd without
argument you will go to the home directory. Test this behavior by calling

$ cd
Try now to go to different locations in the file system and list the files and folders located there.
Now we will create our first folder using the command mkdir (make directory). Go into the home directory and type:

$ mkdir my_first_folder

Here we can discuss the implementation of another Unix philosophy: “No news is good news.” The command successfully
created the folder my_first_folder. You can check this by calling 1s, but mkdir did not tell you this. If you do not
get a message this usually means everything went fine. If you call the above mkdir command again you should get an
error message like this:

$ mkdir my_first_folder
mkdir: cannot create directory ‘my_first_folder’: File exists

So if a command does not complain you can usually assume there was no error.

Manipulating files and folder

Topics:

e touch

* Cp
* mv
e rm

Next we want to manipulate files and folders. We create some dummy files using touch which is usually used to change
the time stamps of files. But you can also create empty files with it easily. Let’s create a file called test_file_1.txt:

$ touch test_file_1.txt
Use 1s to check that it was created.

The command cp (copy) can be used to copy files. For this it requires at least two arguments: the source and the target
file. In the following example we generate a copy of the file test_file_1.txt called a_copy_of_test_file.txt.

$ cp test_file_1.txt a_copy_of_test_file.txt

Use 1s to confirm that this worked. We can also copy the file in the folder my_first_folder which we have created
above:

$ cp test_file_1.txt my_first_folder

Now there should be also a file test_file_1.txt in the foldermy_first_folder. If you want to copy a folder and
its content you have to use the parameter -r.

$ cp -r my_first_folder a_copy_of_my_first_folder

You can use the command mv (move) to rename or relocate files or folders. Torename thefilea_copy_of_test_file.txt
totest_file_with_new_name.txt call

$ mv a_copy_of_test_file.txt test_file_with_new_name.txt

With mv you can also move a file into a folder. For this the second argument has to be a folder. For example, to move
the file now named test_file_with_new_name.txt into the foldermy_first_folder use

$ mv test_file_with_new_name.txt my_first_folder

You are not limited to one file if you want to move them into a folder. Let’s create and move two files filel and file2
into the foldermy_first_folder.

$ touch filel file2
$ mv filel file2 my_first_folder

At this point we can introduce another handy feature most shells offer which is called globbing. Let us assume you
want to apply the same command to several files. Instead of explicitly writing all the file names you can use a globbing
pattern to address them. There are different wildcards that can be used for these patterns. The most important one is
the asterisk (*). It can replace none, one or more characters. Let us explore this with a small example:

$ touch filel.txt file2.txt file3
$ 1s *txt
$ mv *txt my_first_folder

The 1s shows the two files matching the given pattern (i.e. filel.txt and file2.txt) while dismissing the one not
matching (i.e. £ile3). Same for mv - it will only move the two files ending with txt.

We accumulated several test files that we do not need anymore. Time to clean up a little bit. With the command rm
(remove) you can delete files and folders. Please be aware that there is no such thing as a trash bin if you remove items
this way. They will be gone for good and without further notice.

To delete a file inmy_first_folder call:
$ rm my_first_folder/filel.txt
To remove a folder use the parameter —r (recursive):

$ rm -r my_first_folder

File content - part 1

Topics:

* less/more
e cat

* echo

¢ head

e tail

e cut

Until now we did not care about the content of the files. This will change now. Please go into the folder
unix_course_files:

$ cd unix_course_files

There should be some files waiting for you. To read the content with the possibility to scroll around we need a so called
pager program. Most Unix systems offer the programs more and less which have very similar functionalities (“more or
less are more or less the same”). We will use the later one here. Let’s open the file origin_of_species.txt

$ less origin_of_species.txt

The file contains Charles Darwin’s Origin of species in plain text. You can scroll up and down line-wise using the arrow
keys or page-wise using the page-up/page-down keys. To quit use the key q. With pager programs you can read file
content interactively, but sometimes you just want to have the content of a file given to you (i.e. on the standard
output). The command cat (concatenate) does that for one or more files. Let us use it to see what is in the example file
two_lines.txt. Assuming you are in the folder unix_course_files you can call

$ cat two_lines.txt

The content of the file is shown to you. You can apply the command to two files and the content is concatenated and
returned:

$ cat two_lines.txt three_lines.txt

This is a good time to introduce the standard input and standard output and what you can do with it. Above | wrote the
output is given to you. This means it is written to the so called standard output. You can redirect the standard output
into a file by using >. Let us use the call above to generate a new file that contains the combined content of both files:

$ cat two_lines.txt three_lines.txt > five_lines.txt
Please have a look at the content of this file:
$ cat five_lines.txt

The standard output can also be redirected to other tools as standard input. More about this below. With cat we can
reuse the existing file content. To create something new we use the command echo which writes a given string to the
standard output.

$ echo "Something very creative"

To redirect the output into a target file use >.

$ echo "Something very creative." > creative.txt

Be aware that this can be dangerous. You will overwrite the content of an existing file. For example if you call now
$ echo "Something very uncreative." > creative.txt

there will be only the latest string written to the file and the previous one will be overwritten. To append the output of a
command to a file without overwriting the content use >>.

$ echo "Something very creative." > creative.txt

$ echo "Something very uncreative." >> creative.txt
Now creative.txt should contain two lines.

Sometimes you just want to get an excerpt of a file e.g. just the first or last lines of it. For this the commands
head and tail can be used. Per default 10 lines are shown. You can use the parameter -n <NUMBER> (e.g.
-n 20 or just ~<NUMBER> (e.g. —20) to specify the number of lines to be displayed. Test the tools with the file
origin_of_species.txt:

$ head origin_of_species.txt
$ tail origin_of_species.txt

You cannot only select vertically but also horizontally using the command cut. Let us extract only the first 10 characters
of each line in the file origin_of_species.txt:

$ cut -c 1-10 origin_of_species.txt

The tool cut can be very useful to extract certain columns from CSV files (comma/character separated values). Have
a look at the content of the file genes.csv. You see that it contains different columns that are tabular-separated. You
can extract selected columns with cut:

$ cut -f 1,4 genes.csv

File content - part 2

Topics:

s WC

e sort
* uniq
* grep
e cut
e tr

There are several tools that let you manipulate the content of a plain text file or return information about it. If you want
for example some statistics about the number of character, words and lines use the command wc. Let us count the
number of lines in the file origin_of_species.txt:

$ wc -1 origin_of_species.txt
You can use the command sort to sort a file alpha-numerically. Test the following calls

$ sort unsorted_numbers.txt
$ sort -n unsorted_numbers.txt
$ sort -rn unsorted_numbers.txt

and try to understand the output.

The tool uniq takes a sorted list of lines and removes line-wise the redundancy. Please have a look at the content of the
file redundant . txt. Then use uniq to generate a non-redundant list:

$ uniq redundant.txt

If you call uniq with —c you get the number of occurrence for each remaining entry:
$ uniq -c redundant.txt

With the tool grep you can extract lines that match a given pattern. For instance, if you want to find all lines in
origin_of_species.txt that contain the word species call

$ grep species origin_of_species.txt

As you can see we only get the lines that contain species but not the ones that contain Species. To make the search
case-insensitive use the parameter —-1i.

$ grep -i species origin_of_species.txt
If you are only interested in the number of lines that match the pattern use -c:
$ grep -ic species origin_of_species.txt

The program tr (translate) exchanges one character by another. It reads from the standard input and performs the
replacement. To direct the content of a file as standard input into a program < is applied. Have a quick look at the
content of the file DNA. txt.

$ cat DNA.txt
We now want to replace all Ts in the file by Us. For this we call:

$ tr T U < DNA.txt

Connecting tools

Another piece of the Unix philosophy is to build small tools that do one thing optimally and use the standard input and
standard output. The real power of Unix builds on the capability to easily connect tools. For this so-called pipes are used.
To use the standard output of one tool as standard input of another tool the vertical bar | is used. For example, in order
to extract the first 1000 lines from origin_of_species.txt, search for lines that contain species, then search in
those lines the ones which contain wild and finally replace the ws by ms call (Please write this in one line in the shell
and remove the \):

$ head -n 1000 origin_of_species.txt | grep species \
| grep wild | tr wm

Examples analysis

Equipped with a fine selection of useful programs and basic understanding of how to combine them, we will no apply
them to analyze real biological data.

Retrieving data

You have used the tool wget above to download the example files. It is very useful, especially, if you want to retrieve
large data sets. We download the fasta file of the Salmonella Thyphimuirum SL1344 chromosome by calling (in this
document the URL is split into three lines. Please write it in one line in the shell and remove the \).

$ wget ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/\
Salmonella_enterica_serovar_Typhimurium_SL1344_uid86645/\
NC_016810.fna

Additionally, we download the annotation in GFF format of the same replicon:

$ wget ftp://ftp.ncbi.nlm.nih.gov/genomes/archive/old_refseq/Bacteria/\
Salmonella_enterica_serovar_Typhimurium_SL1344_uid86645/\
NC_016810.gff

Counting the number of features

Use less to have a look at NC_016810.gff. It is a tabular-separated file. The first 5 lines start with # and are called
header. Then several lines with 9 columns follow. The third column contains the type of the entry (gene, CDS, tRNA,
rRNA, etc). If we want to know the numbers of tRNA entries we could try to apply grep and use —-c to count the number
of matching lines.

$ grep -c tRNA NC_016810.gff

This leads to a suspiciously large number. The issue is that the string tRNA also occurs in the attribute column (the 9th
column). We just want to select lines with a match in the third column. This can be achieved by combining cut and

grep.
$ cut -f 3 NC_016810.gff | grep -c tRNA

To get the number of entries for all other features we could just replace the tRNA e.g. by rRNA. But we can also get the
number for all of them at once using this constellation:

$ grep -v "#" NC_016810.gff | cut -f 3 | sort | uniq -c
Try to understand what we did here. You can use a similar call to count the number genes on the plus and minus strand:

$ cut -f 3,7 NC_016810.gff | grep gene | sort | uniq -c

Calculate the GC content of a genome
Let us assume the GC content of the genome is not known to us. We can use a handful of commands to calculate this
quickly. We can gain the number of nucleotides in the following manner.

$ grep -v ">" NC_016810.fna | grep -o "A" | wc -1
$ grep -v ">" NC_016810.fna | grep -o "C" | wc -1
$ grep -v ">" NC_016810.fna | grep -o "G" | wc -1

$ grep -v ">" NC_016810.fna | grep -o "T" | wc -1

As we only need to get the sum of As and Ts as well as Cs and Gs we can use an extended pattern for grep. The | means
or:

$ grep -v ">" NC_016810.fna | grep -Eo "A|T" | wc -1

$ grep -v ">" NC_016810.fna | grep -Eo "CIG" | wc -1
Once we have the number we can calculate the GC content by piping a formula into the calculator bc.

$ echo "scale=5; 2332503/(2332503+2545509)*100" | bc

Multiple sequence alignment with muscle

We cannot only work with the default tools of the Unix shell but additionally have now access to a plethora of command
line tools. Let’'s assume we want to perform a multiple alignment of the members of the GImZ family. We choose muscle
for this purpose. Its web site offers compiled binaries which means we only have to download the containing archive via
(again, please write it in one line in the shell and remove the \).

$ wget http://www.driveb.com/muscle/downloads3.8.31/\
muscle3.8.31_1i86linux64.tar.gz

and extract it:

$ tar xfz muscle3.8.31_i86linux64.tar.gz

http://rfam.xfam.org/family/GlmZ_SraJ
http://www.drive5.com/muscle/

(If you happen to have an older 32 bit systemusemuscle3.8.31_1i861inux32.tar.gzinstead of muscle3.8.31_i861linux64.tar.g;
in the two command above.)

As we might need this tool more often (this is purely hypothetical as once you shutdown the live system any data will be
gone) we generate a folder bin in our home directory. This is by convention a place were those programs are stored.

$ mkdir bin

Then we move the tool into the folder and rename it:
$ mv muscle3.8.31_i861linux64 ~/bin/muscle
and clean up a little bit:

$ rm muscle3.8.31_i86linux64.tar.gz

Now we download the sequences of the RNAs which we want to align (again, please write the URL in one line and remove
the \).

$ wget -0 RF00083.fa "http://rfam.xfam.org/family/RF00083/\
alignment?acc=RF00083&format=fastau&download=1"

Have a look at the content of the file using 1less or cat.

If you call muscle without anything you will get a list of parameters.
$ ~/bin/muscle

Please be aware that we have to give the path to muscle.

We want to specify an input file using (-in) and an output file (-out):
$ ~/bin/muscle -in RF00083.fa -out RF00083_aligned.fa

Now we have the alignments stored in RFO0083_aligned. fa.

Very, very basic scripting

One huge advantage of the Unix shell is that you can script actions. For example you can write the command for the
multiple alignment into a file e.g. using echo:

$ echo "~/bin/muscle -in RF00083.fa -out RF00083_aligned.fa" \
> run_me.sh

If you want to run the command in that script you can call the script in the following manner:
$ bash run_me.sh

Shell scripting offers very powerful options to program workflows. Due to time restriction we will not cover this here.

What’s next

Here we just covered a small selection of tools and possibilities and hope that you can extend your Unix skills based on
this knowledge yourself. There are many basic tools we have not covered but which could be important, e.g., archiving
and compression tools like tar, bzip2 and gzip. For more powerful text manipulation sed and awk are good choices.
We also recommend to get familiar with text editors which can be used to interactively modify text files. Classic Unix
environment editors are vi (and derivatives like vim) or Emacs. While they are very powerful they have a steep learning
curve. For beginners gedit that offers a graphical user interface could be another option.

10

https://en.wikipedia.org/wiki/
https://en.wikipedia.org/wiki/Vim_%28text_editor%29
https://www.gnu.org/software/emacs/

	Motivation and background
	Work environment and test files
	The basic anatomy of a command line call
	How to get help and documentation
	Bash keyboard shortcuts
	Files, folders, locations
	Manipulating files and folder
	File content - part 1
	File content - part 2
	Connecting tools
	Examples analysis
	Retrieving data
	Counting the number of features
	Calculate the GC content of a genome
	Multiple sequence alignment with muscle

	Very, very basic scripting
	What's next

