Journal article Open Access

An Effective Method for Predicting Malware Family

Nourin N.S; Sulphikar A

Sponsor(s)
Blue Eyes Intelligence Engineering & Sciences Publication(BEIESP)

Today, many of devices are connected to internet through networks. Malware (such as computer viruses, trojans, ransomware, and bots) has becoming a critical concern and evolving security threats to the internet users nowadays. To make legitimate users safe from these attacks, many anti-malware software products has been developed. Which provide the major defensive methods against those malwares. Due to rapid spread and easiness of generating malicious code, the number of new malware samples has dramatically increased. There need to take an immediate action against these increase in malware samples which would result in an intelligent method for malware detection. Machine learning approaches are one of the efficient choices to deal with the problem which helps to distinguish malware from benign ones. In this paper we are considering xception model for malware detection. This experiment results shows the efficiency of our proposed method, which gives 98% accuracy with malimg dataset. This paper helps network security area for their efficient works.

Files (410.9 kB)
Name Size
D8510049420.pdf
md5:432dc7d1f2bde163ae9ec79634107e0e
410.9 kB Download
24
11
views
downloads
Views 24
Downloads 11
Data volume 4.5 MB
Unique views 21
Unique downloads 11

Share

Cite as