Software Open Access

The Predictive Ecosystem Analyzer (PEcAn) is an integrated ecological bioinformatics toolbox.

David LeBauer; Michael Dietze; Rob Kooper; Alexey Shiklomanov; Betsy Cowdery; Istem Fer; Anthony Gardella; Ben Bond-Lamberty; Shawn P. Serbin; Ann Raiho; Anne Thomas; Chris Black; James Simkins; Ankur Desai; Joshua Mantooth; Aman Kumar; Liam Burke; Afshin Pourmokhtarian; Christy Rollinson; Shubham Agarwal; Brady Hardiman; Martin De Kauwe; Eugene; Tess McCabe; Katie Ragosta; Tony Cohen; zhangwenx; Tony Viskari; Yan Zhao; Jing Xia

The Predictive Ecosystem Analyzer (PEcAn) (see is an integrated ecological bioinformatics toolbox (Dietze et al 2013, LeBauer et al, 2013) that consists of: 1) a scientific workflow system to manage the immense amounts of publicly-available environmental data and 2) a Bayesian data assimilation system to synthesize this information within state-of-the-art ecosystems models. This project is motivated by the fact that many of the most pressing questions about global change are not necessarily limited by the need to collect new data as much as by our ability to synthesize existing data. This project seeks to improve this ability by developing a accessibe framework for integrating multiple data sources in a sensible manner.
The PEcAn project is supported by the National Science Foundation (ABI #1062547, ABI #1458021, DIBBS #1261582, ARC #1023477, EF #1318164, EF #1241894, EF #1241891, EF #1501873, EF #1638577, EF #1702996), NASA Terrestrial Ecosystems #NNX14AH65G, NASA CMS #80NSSC17KO711, NASA NESSF #NNX16AO13H, the Department of Energy (ARPA-E awards #DE-AR0000594, #DE-AR0000598, and #SERDP RC-2636), the Energy Biosciences Institute, and an Amazon AWS in Education Grant.
Files (61.6 MB)
Name Size
61.6 MB Download
  • LeBauer, David S, Dan Wang, Katherine Richter, Carl Davidson, and Michael C Dietze (2013). Facilitating feedbacks between field measurements and ecosystem models. Ecological Monographs. doi:10.1890/12-0137.1

  • Wang, Dan, David S LeBauer, and Michael C Dietze (2013). Predicting yields of short-rotation hybrid poplar (Populus spp.) for the contiguous US through model-data synthesis. Ecological Applications doi:10.1890/12-0854.1

  • Dietze, Michael C, David S LeBauer, and Rob Kooper (2013). On improving the communication between models and data. Plant, Cell, & Environment doi:10.1111/pce.12043

  • Dietze, Michael C, Shawn P Serbin, Carl Davidson, Ankur R Desai, Xiaohui Feng, Ryan Kelly, Rob Kooper, David LeBauer, Josh Mantooth, Kenton McHenry, Dan Wang (2014) A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes. Journal of Geophysical Research: Biogeosciences 119, no. 3 (2014): 286-300.

  • Viskari, Toni, Brady Hardiman, Ankur R. Desai, and Michael C. Dietze. (2015) Model-data assimilation of multiple phenological observations to constrain and predict leaf area index. doi:10.1890/14-0497.1

  • Shiklomanov. A, MC Dietze, T Viskari, PA Townsend, SP Serbin. (2016) Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion. Remote Sensing of the Environment 183: 226-238

  • LeBauer, David S, Rob Kooper, Patrick Mulrooney, Scott Rohde, Dan Wang, Stephen P Long, & Michael C Dietze (2018). BETYdb: a yield, trait, and ecosystem service database applied to second generation bioenergy feedstock production. GCB Bioenergy, 10(1), 61-71. doi: 10.1111/gcbb.12420

All versions This version
Views 37792
Downloads 358
Data volume 1.5 GB492.6 MB
Unique views 32384
Unique downloads 248


Cite as