Software Open Access
Liu, Lufei; Chang, Wesley; Demoullin, Francois; Chou, Yuan Hsi; Saed, Mohammadreza; Pankratz, David; Nowicki, Tyler; Aamodt, Tor M.
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nmm##2200000uu#4500</leader> <controlfield tag="005">20211009014845.0</controlfield> <datafield tag="500" ind1=" " ind2=" "> <subfield code="a">This version uses L1 data cache instead of specialized RT cache</subfield> </datafield> <controlfield tag="001">5557800</controlfield> <datafield tag="711" ind1=" " ind2=" "> <subfield code="d">2021</subfield> <subfield code="g">MICRO</subfield> <subfield code="a">IEEE/ACM International Symposium on Microarchitecture</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Chang, Wesley</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Demoullin, Francois</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Chou, Yuan Hsi</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Saed, Mohammadreza</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Pankratz, David</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Nowicki, Tyler</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="a">Aamodt, Tor M.</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">3179199769</subfield> <subfield code="z">md5:12a1c4922466bd8e40c7f674881d1793</subfield> <subfield code="u">https://zenodo.org/record/5557800/files/rtpredictorimage.tar.gz</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-09-02</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">software</subfield> <subfield code="o">oai:zenodo.org:5557800</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="a">Liu, Lufei</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Intersection Prediction for Accelerated GPU Ray Tracing</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>This artifacts contains a Docker image, in which the simulator used in our MICRO 2021 conference paper is installed. The system also includes a ray tracing application and scripts to generate results to match the paper.&nbsp;</p> <p>Ray tracing techniques can generate highly realistic images by traversing rays through hierarchical acceleration structures and testing for intersections. Raster-based shading techniques have historically been preferred for real-time graphics due to the computational intensity of ray tracing. However, recent Graphics Processing Units (GPUs) now incorporate hardware support for ray tracing, accelerating the ray traversal and intersection process. We observe that rays which follow similar paths execute many redundant ray-box intersection tests in their traversals. We propose a ray intersection predictor to speculatively elide redundant operations in traversals and proceed directly to necessary intersection tests.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.5147579</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.5557800</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">software</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 358 | 149 |
Downloads | 112 | 74 |
Data volume | 353.1 GB | 235.3 GB |
Unique views | 290 | 137 |
Unique downloads | 83 | 52 |