Report Open Access

< QC | HPC >: Quantum for HPC

Bartsch, Valeria; Colin de Verdière, Guillaume; Nominé, Jean-Philippe; Ottaviani, Daniele; Dragoni, Daniele; Bouazza, Chayma; Magugliani, Fabrizio; Bowden, David; Allouche, Cyril; Johansson, Mikael; Terzo, Olivier; Scarabosio, Andrea; Vitali, Giacomo; Shagieva, Farida; Michielsen, Kristel


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Anguita, Davide, Sandro Ridella, Fabio Rivieccio, and Rodolfo Zunino. 2003. "Quantum optimization for training support vector machines." Neural Networks 16 (5-6): 763-770. doi:https://doi.org/10.1016/S0893-6080(03)00087-X.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Anschuetz, Eric R., Jonathan P. Olson, Alán Aspuru-Guzik, and Yudong Cao. 2018. "Variational Quantum Factoring." https://arxiv.org/abs/1808.08927.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Atos. n.d. "Q-Score: measure what truly matters." Accessed 2021. https://atos.net/en/solutions/q-score.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bichsel, Benjamin, Maximilian Baader, and Timon Gehr. 2020. "Silq: a high-level quantum language with safe uncomputation and intuitive semantics." PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 286-300. doi:https://doi.org/10.1145/3385412.3386007.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bitkom. n.d. "Bitkom-Übersicht Deutsches Quanten-Ökosystem v1.1." Accessed 2021. https://www.bitkom.org/sites/default/files/2021-03/deutsches_quanten-okosystem_v1.1_public.pdf.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bobier, Jean-François, Matt Langione, Edward Tao, and Antoine Gourévitch. 2021. "What Happens When 'If' Turns to 'When' in Quantum Computing?" BCG. 21 07. https://www.bcg.com/fr-fr/publications/2021/building-quantum-advantage.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Bravo-Prieto, Carlos, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles. 2020. "Variational Quantum Linear Solver." https://arxiv.org/abs/1909.05820.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Britt, Keith A., and Travis S. Humble. 2017. "High-Performance Computing with Quantum Processing Units." ACM Journal on Emerging Technologies in Computing Systems 13 (3): 1-13. doi:https://doi.org/10.1145/3007651.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">CEA LETI. n.d. "Five advantages of silicon spin." Accessed 2021. https://www.leti-cea.com/cea-tech/leti/english/Pages/Applied-Research/Strategic-Axes/Quantum-Computing/Fundamental-Advantage-of-Silicon-Spin/Five-advantages-of-silicon-spin.aspx.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Classiq. n.d. https://www.classiq.io/.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Dalyac, Constantin, Loïc Henriet, Emmanuel Jeandel, Wolfgang Lechner, Simon Perdrix, Marc Porcheron, and Margarita Veshchezerova. 2021. "Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles." EPJ Quantum Technlogy 8: 12. doi:https://doi.org/10.1140/epjqt/s40507-021-00100-3.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Deutsch, David. 1985. "Quantum theory, the Church–Turing principle and the universal quantum computer." Proceedings of the Royal Society A (Royal Society) 400 (1818). doi:https://doi.org/10.1098/rspa.1985.0070.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Devoret, M H, A Wallraff, and J M Martinis. 2004. "Superconducting Qubits: A Short Review." https://arxiv.org/abs/cond-mat/0411174.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Farhi, Edward, and Hartmut Neven. 2018. "Classification with Quantum Neural Networks on Near Term Processors." https://arxiv.org/abs/1802.06002.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. 2014. "A Quantum Approximate Optimization Algorithm." https://arxiv.org/abs/1411.4028.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Google Quantum AI. n.d. "Cirq." Accessed 2021. https://quantumai.google/cirq.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Grant, Erica, Travis S. Humble, and Benjamin Stump. 2021. "Benchmarking Quantum Annealing Controls with Portfolio Optimization." Physical Review Applied 15 (1): 014012. doi:https://doi.org/10.1103/PhysRevApplied.15.014012. Häffner, H., C.F. Roos, and R. Blatt. 2008. "Quantum computing with trapped ions." Physics Reports (Elsevier) 469 (4): 155-203. doi:https://doi.org/10.1016/j.physrep.2008.09.003.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Häffner, H., C.F. Roos, and R. Blatt. 2008. "Quantum computing with trapped ions." Physics Reports (Elsevier) 469 (4): 155-203. doi:https://doi.org/10.1016/j.physrep.2008.09.003.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Henriet, Loïc, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak. 2020. "Quantum computing with neutral atoms." Quantum 4: 327. doi:https://doi.org/10.22331/q-2020-09-21-327.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">IBM. n.d. "IBM's roadmap for scaling quantum technology." Accessed 2021. https://research.ibm.com/blog/ibm-quantum-roadmap.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Kitaev, A. Yu. 1995. "Quantum measurements and the Abelian Stabilizer Problem." Electronic Colloquium on Computational Complexity (ECCC). https://arxiv.org/abs/quant-ph/9511026.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Kurek, Michel. 2020. "Technologies quantiques: vers la seconde révolution." https://www.researchgate.net/publication/350521248_TECHNOLOGIES_QUANTIQUES_VERS_LA_SECONDE_REVOLUTION.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. 2013. "Quantum algorithms for supervised and unsupervised machine learning." https://arxiv.org/abs/1307.0411.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Lucas, Andrew. 2014. "Ising formulations of many NP problems." Frontiers in Physics 2: 5. doi:https://doi.org/10.3389/fphy.2014.00005.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Martiel, Simon, Thomas Ayral, and Cyril Allouche. 2021. "Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way." IEEE Transactions on Quantum Engineering 2. doi:https://doi.org/10.1109/TQE.2021.3090207.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Peruzzo, Alberto, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. 2014. "A variational eigenvalue solver on a photonic quantum processor." Nature Communications 5: 4213. doi:https://doi.org/10.1038/ncomms5213.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Pulser. n.d. Accessed 2021. https://pulser.readthedocs.io.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Qiskit. n.d. Accessed 2021. https://qiskit.org/.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Quantum Computing Report. n.d. "Players." Accessed 2021. https://quantumcomputingreport.com/players/.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Sarkar, Aritra, Zaid Al-Ars, and Koen Bertels. 2021. "QuASeR: Quantum Accelerated de novo DNA sequence reconstruction." PLoS ONE 16 (4). doi:https://doi.org/10.1371/journal.pone.0249850.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Veldhorst, M., H. G. J. Eenink, C. H. Yang, and A. S. Dzurak. 2017. "Silicon CMOS architecture for a spin-based quantum computer." Nature Communications 8: 1766. doi:https://doi.org/10.1038/s41467-017-01905-6.</subfield>
  </datafield>
  <datafield tag="999" ind1="C" ind2="5">
    <subfield code="x">Wang, Chi, Huo Chen, and Edmond Jonckheere. 2016. "Quantum versus simulated annealing in wireless interference network optimization." Scientific Reports 6: 25797. doi:https://doi.org/10.1038/srep25797.</subfield>
  </datafield>
  <controlfield tag="005">20211014014832.0</controlfield>
  <controlfield tag="001">5555960</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CEA</subfield>
    <subfield code="0">(orcid)0000-0002-8835-4123</subfield>
    <subfield code="a">Colin de Verdière, Guillaume</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CEA</subfield>
    <subfield code="a">Nominé, Jean-Philippe</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CINECA</subfield>
    <subfield code="a">Ottaviani, Daniele</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="0">(orcid)0000-0002-1644-5675</subfield>
    <subfield code="a">Dragoni, Daniele</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Pasqal</subfield>
    <subfield code="a">Bouazza, Chayma</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">E4 Computer Engineering</subfield>
    <subfield code="a">Magugliani, Fabrizio</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dell Technologies</subfield>
    <subfield code="0">(orcid)0000-0003-4623-3806</subfield>
    <subfield code="a">Bowden, David</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Atos</subfield>
    <subfield code="0">(orcid)0000-0002-9699-4219</subfield>
    <subfield code="a">Allouche, Cyril</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">CSC– IT Center for Science</subfield>
    <subfield code="0">(orcid)0000-0002-9793-8235</subfield>
    <subfield code="a">Johansson, Mikael</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">LINKS Foundation</subfield>
    <subfield code="0">(orcid)0000-0001-8482-2607</subfield>
    <subfield code="a">Terzo, Olivier</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">LINKS Foundation</subfield>
    <subfield code="0">(orcid)0000-0002-7372-6975</subfield>
    <subfield code="a">Scarabosio, Andrea</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">LINKS Foundation</subfield>
    <subfield code="0">(orcid)0000-0002-3056-796X</subfield>
    <subfield code="a">Vitali, Giacomo</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">HLRS</subfield>
    <subfield code="0">(orcid)0000-0003-4881-8365</subfield>
    <subfield code="a">Shagieva, Farida</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Jülich Supercomputing Centre</subfield>
    <subfield code="0">(orcid)0000-0003-1444-4262</subfield>
    <subfield code="a">Michielsen, Kristel</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">3224993</subfield>
    <subfield code="z">md5:42358a4759be57263ed6a8f8cdf9dc54</subfield>
    <subfield code="u">https://zenodo.org/record/5555960/files/ETP4HPC_WP_Quantum4HPC_FINAL.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-10-08</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-etp4hpc</subfield>
    <subfield code="o">oai:zenodo.org:5555960</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Fraunhofer ITWM</subfield>
    <subfield code="a">Bartsch, Valeria</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">&lt; QC | HPC &gt;: Quantum for HPC</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-etp4hpc</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Quantum Computing (QC) describes a new way of computing based on the principles of quantum mechanics. From a High Performance Computing (HPC) perspective, QC needs to be integrated:&lt;/p&gt;

&lt;ul&gt;
	&lt;li&gt;at a system level, where quantum computer technologies need to be integrated in HPC clusters;&lt;/li&gt;
	&lt;li&gt;at a programming level, where the new disruptive ways of programming devices call for a full hardware-software stack to be built;&lt;/li&gt;
	&lt;li&gt;at an application level, where QC is bound to lead to disruptive changes in the complexity of some applications so that compute-intensive or intractable problems in the HPC domain might become tractable in the future.&lt;/li&gt;
&lt;/ul&gt;

&lt;p&gt;The White Paper QC for HPC focuses on the technology integration of QC in HPC clusters, gives an overview of the full hardware-software stack and QC emulators, and highlights promising customised QC algorithms for near-term quantum computers and its impact on HPC applications. In addition to universal quantum computers, we will describe non-universal QC where appropriate. Recent research references will be used to cover the basic concepts. Thetarget audience of this paper is the European HPC community: members of HPC centres, HPC algorithm developers, scientists interested in the co-design for quantum hardware, benchmarking, etc.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5555959</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5555960</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">report</subfield>
  </datafield>
</record>
307
126
views
downloads
All versions This version
Views 307307
Downloads 126126
Data volume 406.3 MB406.3 MB
Unique views 299299
Unique downloads 114114

Share

Cite as