Report Open Access
Bartsch, Valeria;
Colin de Verdière, Guillaume;
Nominé, Jean-Philippe;
Ottaviani, Daniele;
Dragoni, Daniele;
Bouazza, Chayma;
Magugliani, Fabrizio;
Bowden, David;
Allouche, Cyril;
Johansson, Mikael;
Terzo, Olivier;
Scarabosio, Andrea;
Vitali, Giacomo;
Shagieva, Farida;
Michielsen, Kristel
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5555960</identifier> <creators> <creator> <creatorName>Bartsch, Valeria</creatorName> <givenName>Valeria</givenName> <familyName>Bartsch</familyName> <affiliation>Fraunhofer ITWM</affiliation> </creator> <creator> <creatorName>Colin de Verdière, Guillaume</creatorName> <givenName>Guillaume</givenName> <familyName>Colin de Verdière</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-8835-4123</nameIdentifier> <affiliation>CEA</affiliation> </creator> <creator> <creatorName>Nominé, Jean-Philippe</creatorName> <givenName>Jean-Philippe</givenName> <familyName>Nominé</familyName> <affiliation>CEA</affiliation> </creator> <creator> <creatorName>Ottaviani, Daniele</creatorName> <givenName>Daniele</givenName> <familyName>Ottaviani</familyName> <affiliation>CINECA</affiliation> </creator> <creator> <creatorName>Dragoni, Daniele</creatorName> <givenName>Daniele</givenName> <familyName>Dragoni</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-1644-5675</nameIdentifier> </creator> <creator> <creatorName>Bouazza, Chayma</creatorName> <givenName>Chayma</givenName> <familyName>Bouazza</familyName> <affiliation>Pasqal</affiliation> </creator> <creator> <creatorName>Magugliani, Fabrizio</creatorName> <givenName>Fabrizio</givenName> <familyName>Magugliani</familyName> <affiliation>E4 Computer Engineering</affiliation> </creator> <creator> <creatorName>Bowden, David</creatorName> <givenName>David</givenName> <familyName>Bowden</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4623-3806</nameIdentifier> <affiliation>Dell Technologies</affiliation> </creator> <creator> <creatorName>Allouche, Cyril</creatorName> <givenName>Cyril</givenName> <familyName>Allouche</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9699-4219</nameIdentifier> <affiliation>Atos</affiliation> </creator> <creator> <creatorName>Johansson, Mikael</creatorName> <givenName>Mikael</givenName> <familyName>Johansson</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-9793-8235</nameIdentifier> <affiliation>CSC– IT Center for Science</affiliation> </creator> <creator> <creatorName>Terzo, Olivier</creatorName> <givenName>Olivier</givenName> <familyName>Terzo</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0001-8482-2607</nameIdentifier> <affiliation>LINKS Foundation</affiliation> </creator> <creator> <creatorName>Scarabosio, Andrea</creatorName> <givenName>Andrea</givenName> <familyName>Scarabosio</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-7372-6975</nameIdentifier> <affiliation>LINKS Foundation</affiliation> </creator> <creator> <creatorName>Vitali, Giacomo</creatorName> <givenName>Giacomo</givenName> <familyName>Vitali</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-3056-796X</nameIdentifier> <affiliation>LINKS Foundation</affiliation> </creator> <creator> <creatorName>Shagieva, Farida</creatorName> <givenName>Farida</givenName> <familyName>Shagieva</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-4881-8365</nameIdentifier> <affiliation>HLRS</affiliation> </creator> <creator> <creatorName>Michielsen, Kristel</creatorName> <givenName>Kristel</givenName> <familyName>Michielsen</familyName> <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0003-1444-4262</nameIdentifier> <affiliation>Jülich Supercomputing Centre</affiliation> </creator> </creators> <titles> <title>< QC | HPC >: Quantum for HPC</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-10-08</date> </dates> <resourceType resourceTypeGeneral="Report"/> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5555960</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5555959</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/etp4hpc</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Quantum Computing (QC) describes a new way of computing based on the principles of quantum mechanics. From a High Performance Computing (HPC) perspective, QC needs to be integrated:</p> <ul> <li>at a system level, where quantum computer technologies need to be integrated in HPC clusters;</li> <li>at a programming level, where the new disruptive ways of programming devices call for a full hardware-software stack to be built;</li> <li>at an application level, where QC is bound to lead to disruptive changes in the complexity of some applications so that compute-intensive or intractable problems in the HPC domain might become tractable in the future.</li> </ul> <p>The White Paper QC for HPC focuses on the technology integration of QC in HPC clusters, gives an overview of the full hardware-software stack and QC emulators, and highlights promising customised QC algorithms for near-term quantum computers and its impact on HPC applications. In addition to universal quantum computers, we will describe non-universal QC where appropriate. Recent research references will be used to cover the basic concepts. Thetarget audience of this paper is the European HPC community: members of HPC centres, HPC algorithm developers, scientists interested in the co-design for quantum hardware, benchmarking, etc.</p></description> <description descriptionType="Other">{"references": ["Anguita, Davide, Sandro Ridella, Fabio Rivieccio, and Rodolfo Zunino. 2003. \"Quantum optimization for training support vector machines.\" Neural Networks 16 (5-6): 763-770. doi:https://doi.org/10.1016/S0893-6080(03)00087-X.", "Anschuetz, Eric R., Jonathan P. Olson, Al\u00e1n Aspuru-Guzik, and Yudong Cao. 2018. \"Variational Quantum Factoring.\" https://arxiv.org/abs/1808.08927.", "Atos. n.d. \"Q-Score: measure what truly matters.\" Accessed 2021. https://atos.net/en/solutions/q-score.", "Bichsel, Benjamin, Maximilian Baader, and Timon Gehr. 2020. \"Silq: a high-level quantum language with safe uncomputation and intuitive semantics.\" PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 286-300. doi:https://doi.org/10.1145/3385412.3386007.", "Bitkom. n.d. \"Bitkom-\u00dcbersicht Deutsches Quanten-\u00d6kosystem v1.1.\" Accessed 2021. https://www.bitkom.org/sites/default/files/2021-03/deutsches_quanten-okosystem_v1.1_public.pdf.", "Bobier, Jean-Fran\u00e7ois, Matt Langione, Edward Tao, and Antoine Gour\u00e9vitch. 2021. \"What Happens When 'If' Turns to 'When' in Quantum Computing?\" BCG. 21 07. https://www.bcg.com/fr-fr/publications/2021/building-quantum-advantage.", "Bravo-Prieto, Carlos, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles. 2020. \"Variational Quantum Linear Solver.\" https://arxiv.org/abs/1909.05820.", "Britt, Keith A., and Travis S. Humble. 2017. \"High-Performance Computing with Quantum Processing Units.\" ACM Journal on Emerging Technologies in Computing Systems 13 (3): 1-13. doi:https://doi.org/10.1145/3007651.", "CEA LETI. n.d. \"Five advantages of silicon spin.\" Accessed 2021. https://www.leti-cea.com/cea-tech/leti/english/Pages/Applied-Research/Strategic-Axes/Quantum-Computing/Fundamental-Advantage-of-Silicon-Spin/Five-advantages-of-silicon-spin.aspx.", "Classiq. n.d. https://www.classiq.io/.", "Dalyac, Constantin, Lo\u00efc Henriet, Emmanuel Jeandel, Wolfgang Lechner, Simon Perdrix, Marc Porcheron, and Margarita Veshchezerova. 2021. \"Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles.\" EPJ Quantum Technlogy 8: 12. doi:https://doi.org/10.1140/epjqt/s40507-021-00100-3.", "Deutsch, David. 1985. \"Quantum theory, the Church\u2013Turing principle and the universal quantum computer.\" Proceedings of the Royal Society A (Royal Society) 400 (1818). doi:https://doi.org/10.1098/rspa.1985.0070.", "Devoret, M H, A Wallraff, and J M Martinis. 2004. \"Superconducting Qubits: A Short Review.\" https://arxiv.org/abs/cond-mat/0411174.", "Farhi, Edward, and Hartmut Neven. 2018. \"Classification with Quantum Neural Networks on Near Term Processors.\" https://arxiv.org/abs/1802.06002.", "Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. 2014. \"A Quantum Approximate Optimization Algorithm.\" https://arxiv.org/abs/1411.4028.", "Google Quantum AI. n.d. \"Cirq.\" Accessed 2021. https://quantumai.google/cirq.", "Grant, Erica, Travis S. Humble, and Benjamin Stump. 2021. \"Benchmarking Quantum Annealing Controls with Portfolio Optimization.\" Physical Review Applied 15 (1): 014012. doi:https://doi.org/10.1103/PhysRevApplied.15.014012. H\u00e4ffner, H., C.F. Roos, and R. Blatt. 2008. \"Quantum computing with trapped ions.\" Physics Reports (Elsevier) 469 (4): 155-203. doi:https://doi.org/10.1016/j.physrep.2008.09.003.", "H\u00e4ffner, H., C.F. Roos, and R. Blatt. 2008. \"Quantum computing with trapped ions.\" Physics Reports (Elsevier) 469 (4): 155-203. doi:https://doi.org/10.1016/j.physrep.2008.09.003.", "Henriet, Lo\u00efc, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak. 2020. \"Quantum computing with neutral atoms.\" Quantum 4: 327. doi:https://doi.org/10.22331/q-2020-09-21-327.", "IBM. n.d. \"IBM's roadmap for scaling quantum technology.\" Accessed 2021. https://research.ibm.com/blog/ibm-quantum-roadmap.", "Kitaev, A. Yu. 1995. \"Quantum measurements and the Abelian Stabilizer Problem.\" Electronic Colloquium on Computational Complexity (ECCC). https://arxiv.org/abs/quant-ph/9511026.", "Kurek, Michel. 2020. \"Technologies quantiques: vers la seconde r\u00e9volution.\" https://www.researchgate.net/publication/350521248_TECHNOLOGIES_QUANTIQUES_VERS_LA_SECONDE_REVOLUTION.", "Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. 2013. \"Quantum algorithms for supervised and unsupervised machine learning.\" https://arxiv.org/abs/1307.0411.", "Lucas, Andrew. 2014. \"Ising formulations of many NP problems.\" Frontiers in Physics 2: 5. doi:https://doi.org/10.3389/fphy.2014.00005.", "Martiel, Simon, Thomas Ayral, and Cyril Allouche. 2021. \"Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way.\" IEEE Transactions on Quantum Engineering 2. doi:https://doi.org/10.1109/TQE.2021.3090207.", "Peruzzo, Alberto, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Al\u00e1n Aspuru-Guzik, and Jeremy L. O'Brien. 2014. \"A variational eigenvalue solver on a photonic quantum processor.\" Nature Communications 5: 4213. doi:https://doi.org/10.1038/ncomms5213.", "Pulser. n.d. Accessed 2021. https://pulser.readthedocs.io.", "Qiskit. n.d. Accessed 2021. https://qiskit.org/.", "Quantum Computing Report. n.d. \"Players.\" Accessed 2021. https://quantumcomputingreport.com/players/.", "Sarkar, Aritra, Zaid Al-Ars, and Koen Bertels. 2021. \"QuASeR: Quantum Accelerated de novo DNA sequence reconstruction.\" PLoS ONE 16 (4). doi:https://doi.org/10.1371/journal.pone.0249850.", "Veldhorst, M., H. G. J. Eenink, C. H. Yang, and A. S. Dzurak. 2017. \"Silicon CMOS architecture for a spin-based quantum computer.\" Nature Communications 8: 1766. doi:https://doi.org/10.1038/s41467-017-01905-6.", "Wang, Chi, Huo Chen, and Edmond Jonckheere. 2016. \"Quantum versus simulated annealing in wireless interference network optimization.\" Scientific Reports 6: 25797. doi:https://doi.org/10.1038/srep25797."]}</description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 306 | 306 |
Downloads | 126 | 126 |
Data volume | 406.3 MB | 406.3 MB |
Unique views | 298 | 298 |
Unique downloads | 114 | 114 |