
Master thesis on Sound and Music Computing

Universitat Pompeu Fabra

Singing Voice Melody Estimation From
Polyphonic Signals

Logan Stillings

Supervisor: Pritish Chandna

August 2021

Master thesis on Sound and Music Computing

Universitat Pompeu Fabra

Singing Voice Melody Estimation From
Polyphonic Signals

Logan Stillings

Supervisor: Pritish Chandna

August 2021

Contents

1 Introduction 1

1.1 Melodic Estimation From Monophonic Signals 2

1.2 Melodic Estimation From Polyphonic Signals 3

1.2.1 Source Separation . 5

1.3 Background . 6

1.3.1 Algorithms . 6

1.3.2 Evaluation Metrics . 8

1.3.3 Dataset . 8

2 Methods 9

2.1 Source Separation . 9

2.1.1 Open-Unmix (umx) . 9

2.2 Estimation . 10

2.2.1 pYIN . 10

2.2.2 CREPE . 10

2.2.3 Melodia . 10

2.2.4 Deep Salience . 11

2.2.5 SPICE . 11

2.2.6 U-Net . 11

2.2.7 Encoder-Decoder Model with SegNet 12

2.3 Evaluation . 12

3 Results 14

3.1 Monophonic Test Set . 14

3.2 Polyphonic Test Set . 18

3.3 Source-Separation Test Set . 23

3.4 Example Estimations . 27

4 Discussion 40

4.1 Discussion . 40

4.2 Conclusions . 42

Bibliography 43

Dedication

I would like to dedicate this work to all the amazing people I met in Barcelona.

Acknowledgement

I would like to express my sincere gratitude to:

� Pritish Chandna

� My family

� My friends

� My fellow students

� My teachers

Abstract

Singing voice melody estimation is the task of calculating the fundamental frequency

(f0) of the predominant voice in a piece of music containing multiple instruments. In

this work, I evaluate the performance of several popular f0 estimation algorithms us-

ing an annotated dataset (MedleyDB) of raw monophonic tracks, polyphonic mixes,

and source-separated vocals. Many of the models were created to estimate the

predominant melody and not necessarily the sung vocal melody, for example they

could be capable of estimating the melody in instrumental music. Of the models

tested, CREPE performs highly as a monophonic model, and Deep Salience and

Encoder/Decoder perform highly as polyphonic models. By implementing source-

separation as a preprocessing step, monophonic models such as CREPE, SPICE,

and become viable options for the task of vocal melody estimation. These mono-

phonic algorithms each perform signi�cantly better in pitch accuracy on the source-

separated vocal tracks compared to the polyphonic mixes. Additionally, each of the

polyphonic algorithms tested increased in overall accuracy when using the source-

separated tracks instead of the polyphonic mixes. I suggest further research im-

plementing source-separation as a preprocessing step to vocal melody estimation

using other source-separation tools and di�erent datasets. Potential datasets could

include tracks with overlapping vocal harmonies as well as di�erent musical styles

such as metal, rap, or non-western music.

Keywords: Melody; Singing Voice; Frequency Estimation

Chapter 1

Introduction

Estimating the melody from a sound mixture is a heavily researched topic in the

�eld of sound and music computing. To de�ne the task of melody estimation from

polyphonic signals, one must �rst de�ne the term �melody�. While the concept of

melody can be quite subjective, one common de�nition [1] states that �the melody

is the single (monophonic) pitch sequence that a listener might reproduce if asked

to whistle or hum a piece of polyphonic music, and that a listener would recognize

as being the essence of that music when heard in comparison.� This de�nition fails

to account for the fact that di�erent listeners may reproduce di�erent instruments

when humming the same song, however, in practice, the melody is a single audio

source that pertains to the main instrument or voice in the piece of music. Estima-

tion involves retrieving the fundamental frequency (f0) of the melody. The f0 of a

signal refers to the physical property most closely related to the perceptual property

of pitch [2], however for this work, the terms pitch and f0 will be used interchange-

ably. Applications of melody estimation include transcription, removing e�ects from

a vocal stem, synthesizing a single voice from unison, converting growling vocals to

a clean voice, vocal e�ects, pitch correction, and remixing. Ideally, melody estima-

tion could help audio engineers and singers alike, as well as improve the current

research on singing voice extraction. In this work, I examine the accuracy of current

state-of-the-art melodic estimation methods for the task of vocal f0 estimation from

1

2 Chapter 1. Introduction

polyphonic mixtures.

1.1 Melodic Estimation From Monophonic Signals

Melodic estimation methods are better understood when �rst examining methods

of monophonic f0 estimation. Monophonic signals only contain a single musical

note playing at any given time. One of the oldest and most intuitive methods of

monophonic f0 estimation is auto-correlation. The auto-correlation of a discrete

signal can be de�ned as:

rt(τ) =
t+W∑
j=t+1

xjxj+τ (1.1)

where rt(τ) is the auto-correlation function of lag τ calculated at time index t, and

W is the integration window size. When given a periodic signal, the auto-correlation

function contains peaks at multiples of the period. In practice, the auto-correlation

method chooses the highest non-zero-lag peak by searching within a range of lags

[3]. This method is somewhat rudimentary and is prone to several types of errors. If

the lower limit is too close to zero, the algorithm may erroneously choose the zero-

lag peak. Conversely, if the higher limit is large enough, it may erroneously choose

a higher-order peak. One of the �rst methods proposed to combat these types of

errors was by using auto-correlation in the spectral domain [4], as opposed to the

time domain. In addition to this technique of using auto-correlation in the spectral

domain, applying spectral conditioning operations such as clipping and �attening

the spectrum help eliminate noise and emphasize lower amplitude harmonics. This

method achieved far fewer octave errors (when an algorithm selects a fundamen-

tal frequency value that is an exact multiple of the ground truth value) than the

original auto-correlation function and was viewed as a signi�cant improvement [4].

The YIN algorithm [3] was proposed to address the errors commonly found with

auto-correlation by implementing a cumulative mean normalized di�erence func-

tion. YIN was not as prone to amplitude changes and had the added bene�t of not

requiring an upper frequency bound for calculations. Although YIN provided a sig-

ni�cantly higher accuracy of f0 estimation compared to auto-correlation, it outlines

a smoothing procedure that does not use the frame-wise estimate, leaving some room

1.2. Melodic Estimation From Polyphonic Signals 3

for improvement. Probabilistic Yin (pYIN) [5] takes YIN and modi�es its frame-

wise variant using a probabilistic distribution to output multiple pitch candidates

with their associated probabilities, while also reducing the loss of useful informa-

tion before smoothing. pYIN uses Hidden Markov Models to output a monophonic

pitch track of the most likely pitch candidates over time for monophonic signals.

For many years, pYIN was considered the state-of-the-art in monophonic f0 esti-

mation. In recent years, many cutting-edge monophonic estimation systems have

implemented deep learning algorithms. Algorithms such as CREPE [6] and SPICE

[7] are data-driven approaches, meaning that they learn from large volumes of data

and are di�erent from knowledge-based approaches (like auto-correlation), which use

domain-speci�c information to in�uence processes. Both CREPE and SPICE show

signi�cant improvements in f0 estimation accuracy for monophonic signals when

compared to pYIN.

1.2 Melodic Estimation From Polyphonic Signals

Polyphony refers to a type of music that contains more than one note playing si-

multaneously. With this de�nition in mind, one can state that melody estimation

is the task of calculating the fundamental frequency of the predominant instrument

or voice within a piece of music that has multiple sources playing simultaneously. It

is also important to note that the melody in consideration should be the predomi-

nant melody or the source that human listeners could easily agree on being the main

melody, regardless of the musical genre of the piece. The main challenges of estimat-

ing the melody in a polyphonic mixture are detecting peak frequencies of the noisy

audio signal, and determining which pitches belong to the melody versus accompa-

niment. In polyphonic music, the audio signal is a superimposed representation of

multiple instruments playing simultaneously. In the frequency domain, this makes

it very di�cult to determine which peak frequencies belong to which instrument.

Additionally, common audio post-processing techniques (such as reverb, delay, and

compression) blur the note onsets and make it increasingly di�cult to detect peak

frequencies. Algorithms also need to be able to determine when the melody is

4 Chapter 1. Introduction

present and when it is not (otherwise known as voicing detection). Some algorithms

can identify vocal melodies more accurately by exploiting major di�erences between

the singing voice and other musical instruments, however wrong pitch estimates and

voicing false alarms do still occur when multiple harmonic sources are present in the

music. Another common error that occurs in vocal melody estimation is the octave

error. This can happen for low f0s because there is an increased salience at double

the true f0 (due to a singer's resonance) and because tracking algorithms commonly

bias against low frequencies [8]. Even after obtaining a pitch-based representation of

the signal, one must determine which pitches relate to the main melody. Melodia [9]

introduces a knowledge-based system that characterizes pitch contours using signal

processing steps and a salience function speci�cally designed for the task of melody

extraction. Using the trajectory of calculated pitch contours, the system successfully

introduces features that tend to indicate melodies, such as the standard deviation

of the contour pitch and the presence of vibrato. These contour features enable

voicing detection, octave error minimization, and melody selection. More recently,

several data-driven approaches have been used for melodic estimation. A U-Net [10]

based model was proposed in 2019 that uses a neural network originally designed

for medical imaging segmentation to estimate the dominant melody in polyphonic

music. Deep Salience [11] and ResNet [12] both use convolutional neural networks

for melody extraction from polyphonic music.

For this research, I will focus on singing voice melodic estimation from polyphonic

signals speci�c to contemporary popular music. Although the singing melody may

not necessarily be the dominant melody in the mixture, it is the target to be es-

timated for this task. The presence of harmonic instruments that are commonly

found in contemporary popular music, such as guitars and synths, may lead to the

supersession of the voice as the dominant melody. Figure 1 contains an image of a

spectrogram that exempli�es an overlap between the harmonics of the instruments

and the harmonics of the singing voice in the song Phantom by Big Troubles. To

address the challenge of overlapping harmonics, models such as HRNet [13] have im-

plemented a two-stage vocal melody extraction system that successfully separates

vocals from an audio mixture and uses an encoder-decoder network to predict the

1.2. Melodic Estimation From Polyphonic Signals 5

vocal f0 values. In this work, I will be comparing the results of common melody

estimation models using a dataset of monophonic, polyphonic, and source-separated

tracks for the task of vocal melody estimation. Some of the algorithms that I use

were originally written to perform f0 estimation of predominant melody and not

necessarily the vocal melody, hence the need to evaluate their performance for this

task.

Figure 1: Big Troubles Phantom Mix Spectrogram. The spectrogram spans from
the 1:10 mark to 1:15. This section of the song has many instruments including
vocals, drums, bass, and guitar. Here the harmonics of the vocals overlap with the
harmonics of the other instruments present in the mix.

1.2.1 Source Separation

The goal of source separation is to recover individual instruments from a mixed

signal that has been mixed as part of a �nal song [14]. There are typically a wide

variety of tones and timbres playing in a coordinated way, which adds to the dif-

�culty of the task. Previous models attempted to predict soft masks over mixture

spectrograms, however recent progress has been made using waveform-based inputs

with recurrent neural networks. With spectrogram-based models, the mask applied

6 Chapter 1. Introduction

to the spectrogram has no reason to be real or obtained from a real signal, which

could result in artifacts caused by a projection step in the inverse Short Time Fourier

Transform process. Demucs [14] is a Convolutional Recurrent model which uses di-

rect waveform training as opposed to spectrogram mixture. Open-Unmix [15] is a

deep neural network reference implementation for music source separation based on

a bi-directional Long Short Term Memory model. In this work, I will be using Open-

Unmix to perform source separation on a dataset of polyphonic music to extract the

vocal melody.

1.3 Background

1.3.1 Algorithms

CREPE

CREPE is a monophonic pitch tracker based on a deep convolutional neural network

operating directly on the time-domain waveform input. It is state-of-the-art (as of

2018), outperforming popular pitch trackers such as pYIN and SWIPE.

Deep Salience

Deep Salience is a neural network architecture for learning pitch salience represen-

tations. Given a time-freq representation, the model learns the set of convolutional

�lters needed to create a salience representation with the same shape and frequency.

The input of this model is the signal's harmonic constant-Q transform (HCQT).

The HCQT is a 3-dimensional array measuring h-th harmonic of freq f at time t.

Combining bin (k) and harmonic (h) in the calculation allows an adaptable model

which can �nd locality in time, freq, and harmonics.

Encoder-Decoder Model with SegNet

This algorithm is a streamlined encoder/decoder architecture that is designed for

melody extraction [16]. It employs only 7 convolution or up-convolution layers.

1.3. Background 7

Melodia

Melodia is a polyphonic pitch tracker that extracts the fundamental frequency of

the predominant melody from a signal. It characterizes pitch contours using signal

processing steps and a salience function speci�cally designed for the task of melody

extraction.

pYIN

pYIN is a modi�cation of the YIN algorithm for monophonic fundamental frequency

estimation. In the �rst step of pYIN, f0 candidates and their probabilities are

computed using the YIN algorithm. In the second step, Viterbi decoding is used to

estimate the most likely f0 sequence and voicing �ags.

SPICE

SPICE is a self-supervised monophonic pitch estimator. When the audio signal is

analyzed through the lens of the constant-Q transform (CQT), pitch shift maps to a

simple translation. SPICE implements a convolutional encoder such that two shifted

CQT inputs result in di�ering outputs proportional to the corresponding di�erence

in pitch.

U-Net

U-Net is a downsampling-upsampling model which was used originally for image

segmentation. The model has been applied for the task of melody estimation in

polyphonic music. The applied model uses a sequential method to train the U-Net

with ground truth data at increasing resolutions. It also contains skip-connections

from the encoding levels to their counterpart decoding levels, which provide an

informative context to the next reconstruction level, and have proven to help localize

features of interest.

8 Chapter 1. Introduction

1.3.2 Evaluation Metrics

There are several core evaluation metrics for measuring the accuracy of f0 estima-

tion. The Raw Pitch Accuracy (RPA) measures the percentage of melody frames

in which the estimated pitch is within a half semitone of a reference [17]. The Raw

Chroma Accuracy (RCA) also measures pitch accuracy but estimated and reference

frequencies are mapped to a single octave, therefore this metric ignores common

octave errors. Voicing Recall (VR) measures the percentage of frames labeled as

voiced in the reference that are also labeled as voiced by the algorithm. Voicing

False Alarm (VFA) measures the percentage of frames labeled as unvoiced in the

reference that are mistakenly estimated as voiced by the algorithm. Overall Accu-

racy (OA) measures the percentage of frames that were labeled correctly in terms

of pitch and voicing. These metrics are commonly used across most f0 estimation

systems.

1.3.3 Dataset

To evaluate melodic estimation systems, a good dataset with ground truth annota-

tions is needed. MedleyDB [18] is a dataset of annotated, royalty-free multitrack

recordings, which was curated speci�cally for the task of melody extraction. The

dataset is made up of 108 multi-tracks with individual WAV �les for the mix, pro-

cessed stems, raw audio. The tracks are from a wide mix of genres such as Singer/-

Songwriter, Classical, Rock, World/Folk, Fusion, Jazz, Pop, Musical Theater, Rap.

In addition to the audio �les, each song is provided with metadata information as

well as ground truth annotations for the fundamental frequency of the melody. The

annotations are stored in a CSV containing timestamp and f0 pairs. This dataset

was chosen because of its access to annotations and raw vocal stems. In this work,

I use a subset of this dataset containing only the 56 tracks that have sung vocals.

Further, I will evaluate each algorithm on the raw audio stems, the polyphonic mix

track, and a source-separated version of the mix tracks.

Chapter 2

Methods

In this work, I evaluate the performance of several f0 estimation algorithms for the

speci�c task of singing voice melody estimation from polyphonic music. Algorithms

that were speci�cally designed for monophonic f0 estimation will be evaluated to

achieve a baseline accuracy, which can be compared with the accuracies of poly-

phonic estimation tools. Of the algorithms previously mentioned in chapter 1, only

those that are available for use as python packages or through open-source reposito-

ries are used. Predictions are made for each algorithm using the subset of tracks in

the MedleyDB dataset as mentioned in section 1.3.3. Each algorithm will only use

the raw tracks, polyphonic mix tracks, and source-separated tracks from the dataset

that contain vocals.

2.1 Source Separation

2.1.1 Open-Unmix (umx)

Open-Unmix is available as a python package and can be implemented from the

command line. The umx command outputs separated stems from the original mix

of vocals, bass, drums, and other instruments. I perform source separation on each

of the polyphonic mix tracks from the MedleyDB subset to have a variety of tracks

to test as well as to test the validity of source separation as a pre-processing step to

9

10 Chapter 2. Methods

vocal melody estimation.

2.2 Estimation

2.2.1 pYIN

Using librosa [19], which is a python package for music and audio analysis, I ob-

tained predictions for each of the raw vocal tracks from the MedleyDB subset. The

minimum and maximum frequency parameters used in the algorithm are 65.41 Hertz

(Hz) and 2093 Hz respectively (corresponding to the range between musical notes

C2 and C7). The librosa method of the pYIN algorithm returns unvoiced frames

as NaN (Not a Number), therefore some post-processing was done to convert the

unvoiced frames to zero to have consistency in the evaluations across all algorithms.

The predictions are saved in a text �le as a timestamp-frequency pair with time in

the leftmost column and frequency in the rightmost column, separated by a space.

2.2.2 CREPE

Similar to pYIN, predictions were obtained on each of the tracks from the MedleyDB

subset. The implementation of CREPE is available as a python package. The

output of CREPE's "predict" function also contains NaN for non-voiced frames, so

those values are converted to zeros. Additionally, the "predict" function returns

a con�dence estimation along with the frequency estimation. Any frames with a

con�dence value of less than 50% (0.5) are regarded as unvoiced. The predictions

are also saved in a text �le as a timestamp-frequency pair with time in the leftmost

column and frequency in the rightmost column, separated by a space.

2.2.3 Melodia

Predictions are obtained on each of the polyphonic mix tracks in the MedleyDB

subset. The implementation of Melodia is available through the Essentia library,

which is an open-source python package. A hop size of 128 samples is used for the

estimator. The predictions are also saved in the same format as mentioned in the

2.2. Estimation 11

two previous algorithms.

2.2.4 Deep Salience

The predictions were obtained by cloning the original repository that accompanied

the paper and by implementing a script that was made available to predict Deep

Salience's output from audio. The script allows for several parameters to a�ect the

output. The non-default parameters implemented were the vocal task to perform

estimations on vocal melodies, and the "singlef0" output to save a CSV of single f0

values. The output is saved as a timestamp-frequency pair where the leftmost col-

umn is time and the rightmost column is frequency. The output values are separated

by a tab, and unvoiced timestamps have negative frequency values.

2.2.5 SPICE

SPICE was implemented by loading the pre-trained TensorFlow model. The model

expects songs with a sampling rate of 16kHz and to contain a single channel (mono),

therefore each track was processed to meet these requirements before using the

track as input to the model. The model outputs uncertainties as a list of values in

the interval [0, 1], corresponding to the rate of certainty of the model in correctly

estimating the pitch. The model also outputs the pitches as a list of values in

the interval [0, 1], which requires conversion to frequency values in Hertz. Pitch

estimates with con�dence below 90% are ignored. The timestamps are calculated

separately using a hop size of 512 samples as dictated by the pre-trained model.

2.2.6 U-Net

The estimations for the U-Net model were obtained by cloning the original repository

and by implementing a provided script. For each audio �le, the script computes its

Harmonic Constant Q Transform (HCQT) and estimates its dominant melody. This

representation is trimmed along the frequency axis to keep only 3 octaves around

the mean pitch. The �nal resolution is one bin per semitone and each time frame is

58 ms. Note that this implementation is di�erent from each of the other algorithms

12 Chapter 2. Methods

and will require a separate step in the evaluation phase to convert the output of the

model to frequency values.1

2.2.7 Encoder-Decoder Model with SegNet

The predictions were obtained by cloning the repository that accompanied the origi-

nal paper and by implementing an available python script to calculate the estimated

f0. The script was run on each of the polyphonic mix tracks in the MedleyDB sub-

set. The vocal model was chosen for this task. The output is saved in a text �le

containing the timestamp-frequency pairs separated by a space.

2.3 Evaluation

After obtaining the predicted f0 for each of the algorithms on the monophonic,

polyphonic, and source-separated tracks, I then perform an evaluation to test the

accuracy of the predictions. Evaluations are done by comparing the ground truth f0

in the annotations from MedleyDB with the estimated f0 as output by each of the

algorithms. For the monophonic tracks, additional parsing is done to ensure that the

raw vocal track corresponds to the vocal stem that matches the predominant vocal

melody according to a ranking system included in the MedleyDB annotations. Raw

vocal tracks that are not part of the stem of the predominant vocal melody are disre-

garded for the sake of this evaluation. Stems are ranked and annotated according to

how likely they are to be the predominant melody. The ground truth is taken as the

annotation labeled as Melody1 in MedleyDB.2 The correct ground truth annotation

and the estimated f0 are then evaluated using mir_eval [20]. mir_eval is a Python

library for evaluating Music Information Retrieval systems. More speci�cally, I use

mir_eval's "melody.evaluate" method, which compares two melody transcriptions,

1The output of the U-Net model requires some additional handling compared to the other
algorithms. U-Net outputs a NumPy array with a shape of (T, 360) where T corresponds to
the Time of the signal and 360 corresponds to the frequency bins within 3 octaves of the mean
pitch. I use the argmax function to map the results from frequency bins into cents, which are then
converted to Hz. A con�dence threshold of 0.3 is chosen to determine voiced and unvoiced frames.

2According to the documentation from MedleyDB, the annotation labeled as Melody1 corre-
sponds to using the following interpretation of melody: �The f0 curve of the predominant melodic
line drawn from a single source�. Therefore, this implementation is well suited for tracks where
there is a single predominant melodic source.

2.3. Evaluation 13

where the �rst is treated as the reference and the second as the estimate to be

evaluated. The method returns scores for the estimation compared to the ground

truth using the �ve evaluation metrics mentioned in section 1.3.2. I calculate the

average evaluation of all the songs as well as the standard deviation in order to easily

compare each algorithm's performance and variance.

Chapter 3

Results

3.1 Monophonic Test Set

This section contains the results of each model being tested on the raw monophonic

vocal tracks from MedleyDB. 3

Figure 2: Mono Overall Accuracy4

3Due to unforeseen errors in converting the output of the U-Net model to frequency values, the
evaluations of U-Net have been omitted from the results.

14

3.1. Monophonic Test Set 15

Table 1: Mono Overall Accuracy
Algorithm Type5 Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 80.31 12.04
pYIN Monophonic 71.21 14.22
SPICE Monophonic 77.88 10.96

Deep Salience Polyphonic 84.67 10.11
Encoder/Decoder Polyphonic 83.87 11.65

Melodia Polyphonic 61.64 21.31

The Overall Accuracies can be seen in Table 1 and Figure 2. CREPE holds the

strongest Overall Accuracy for the monophonic algorithms however, both the En-

coder/Decoder model and Deep Salience have higher accuracy scores for the poly-

phonic algorithms.

Figure 3: Mono Raw Pitch Accuracy

4Figure 2 and each of the following Figures pertaining to accuracy metrics use the same format
of box plots. In each �gure, the dashed green line represents the average, while the solid orange line
represents the median. The top of each box represents Quartile 3, the median of the upper dataset
when dividing the total dataset into two parts via the median. The bottom of each box represents
Quartile 1, the median of the lower dataset when dividing the total dataset into two parts via the
median. The boxed area represents the interquartile range or the range between Quartile 3 and
Quartile 1. The whiskers mark the range of the non-outlier data. The implemented de�nition of
non-outlier is [Q1 - 1.5xIQR, Q3 + 1.5xIQR].

5For Table 1 and each of the following tables, Type refers to the primary target audio type that
the algorithm was originally trained to handle.

16 Chapter 3. Results

Table 2: Mono Raw Pitch Accuracy
Algorithm Type Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 80.61 23.16
pYIN Monophonic 71.13 21.64
SPICE Monophonic 70.46 23.42

Deep Salience Polyphonic 81.79 22.45
Encoder/Decoder Polyphonic 72.66 24.10

Melodia Polyphonic 74.16 25.77

The Raw Pitch Accuracies can be seen in Figure 3 and Table 2. The highest Pitch

Accuracy of monophonic algorithms is CREPE and Deep Salience for polyphonic

algorithms.

Figure 4: Mono Raw Chroma Accuracy

Table 3: Mono Raw Chroma Accuracy
Algorithm Type Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 80.85 23.17
pYIN Monophonic 71.99 21.62
SPICE Monophonic 70.51 23.39

Deep Salience Polyphonic 82.62 20.88
Encoder/Decoder Polyphonic 72.90 24.16

Melodia Polyphonic 77.29 23.17

The results for Raw Chroma Accuracy can be seen in Figure 4 and Table 3. The

3.1. Monophonic Test Set 17

results are quite similar to that of the Raw Pitch Accuracies, with no signi�cant

di�erences between the two metrics across the di�erent algorithms. This is rather

intuitive given that the Raw Chroma Accuracy is implemented as a version of pitch

accuracy that ignores octave errors, therefore the Raw Chroma Accuracy for each

algorithm will be slightly better than the Raw Pitch Accuracy.

Figure 5: Mono Voicing Recall

Table 4: Mono Voicing Recall
Algorithm Type Rate Value (%) Standard Deviation (%)

CREPE Monophonic 90.32 19.32
pYIN Monophonic 89.95 19.56
SPICE Monophonic 80.10 22.23

Deep Salience Polyphonic 84.90 19.12
Encoder/Decoder Polyphonic 82.47 21.02

Melodia Polyphonic 91.85 7.16

The Voicing Recall rates can be seen in Table 4 and Figure 5. Both CREPE and

pYIN achieve an accuracy of roughly 90% for the Monophonic models. Melodia is

the strongest of the Polyphonic models.

The Voicing False Alarm rates can be seen in Figure 6 and Table 5. It should be

noted that models scoring lower VFAs are seen as better-performing since they are

18 Chapter 3. Results

Figure 6: Mono Voicing False Alarm

Table 5: Mono Voicing False Alarm
Algorithm Type Rate Value (%) Standard Deviation (%)

CREPE Monophonic 23.39 16.66
pYIN Monophonic 31.30 18.81
SPICE Monophonic 19.14 11.25

Deep Salience Polyphonic 11.49 8.03
Encoder/Decoder Polyphonic 10.22 9.50

Melodia Polyphonic 47.33 23.21

less likely to incorrectly predict unvoiced frames as being voiced. The algorithms

with the lowest VFA rate are SPICE for monophonic, and Encoder/Decoder for

polyphonic. Both Melodia and pYIN have relatively high VFAs as well as high

Voicing Recalls. This could be attributed to the algorithms predicting a voicing for

a large portion of the total frames in a given track.

3.2 Polyphonic Test Set

This section contains the results of each model being tested on the mixed polyphonic

tracks from MedleyDB.

3.2. Polyphonic Test Set 19

Figure 7: Poly Overall Accuracy

Table 6: Poly Overall Accuracy
Algorithm Type Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 52.17 11.78
pYIN Monophonic 26.60 13.45
SPICE Monophonic 58.34 11.78

Deep Salience Polyphonic 77.41 8.59
Encoder/Decoder Polyphonic 79.08 9.47

Melodia Polyphonic 60.63 14.59

The Overall Accuracies can be seen in Figure 7 and Table 6. The highest perform-

ing model is Encoder/Decoder with Deep Salience showing comparable results of

around 79%. Each of the monophonic algorithms performs noticeably worse than

the polyphonic algorithms. This can be easily attributed to the fact that these

models were not trained or intended to be used to predict melody from polyphonic

tracks. Therefore, these monophonic models likely have trouble discerning the cor-

rect harmonic information of the vocal melody from the other instruments present

in the mix.

The Raw Pitch Accuracy can be seen in Figure 8 and Table 7. Deep Salience has the

highest accuracy for polyphonic models with Encoder/Decoder and Melodia being

20 Chapter 3. Results

Figure 8: Poly Raw Pitch Accuracy

Table 7: Poly Raw Pitch Accuracy
Algorithm Type Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 52.11 20.60
pYIN Monophonic 11.79 15.15
SPICE Monophonic 14.58 11.29

Deep Salience Polyphonic 82.11 10.51
Encoder/Decoder Polyphonic 69.86 18.09

Melodia Polyphonic 63.30 21.01

slightly worse in performance as well as containing more variance.

Table 8: Poly Raw Chroma Accuracy
Algorithm Type Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 50.23 19.46
pYIN Monophonic 25.96 15.75
SPICE Monophonic 14.74 11.31

Deep Salience Polyphonic 84.78 9.51
Encoder/Decoder Polyphonic 71.26 17.68

Melodia Polyphonic 69.31 16.87

The Raw Chroma Accuracy can be seen in Figure 9 and Table 8. The results are very

similar to the Raw Pitch Accuracy with Deep Salience having the best performance.

3.2. Polyphonic Test Set 21

Figure 9: Poly Raw Chroma Accuracy

Figure 10: Poly Voicing Recall

The Voicing Recall rates can be seen in Figure 10 and Table 9. Melodia has the

highest performance for this metric, however as previously mentioned in Section 3.1,

Melodia was seen to predict numerous frames as being voiced, therefore leading to

22 Chapter 3. Results

Table 9: Poly Voicing Recall
Algorithm Type Rate Value (%) Standard Deviation (%)

CREPE Monophonic 67.61 15.16
pYIN Monophonic 59.80 22.55
SPICE Monophonic 16.30 12.01

Deep Salience Polyphonic 66.50 20.18
Encoder/Decoder Polyphonic 77.85 16.35

Melodia Polyphonic 84.12 8.62

an in�ated Voicing Recall rate.

Figure 11: Poly Voicing False Alarm

Table 10: Poly Voicing False Alarm
Algorithm Type Rate Value (%) Standard Deviation (%)

CREPE Monophonic 49.30 11.50
pYIN Monophonic 62.06 19.38
SPICE Monophonic 5.96 4.90

Deep Salience Polyphonic 12.96 9.62
Encoder/Decoder Polyphonic 14.97 10.56

Melodia Polyphonic 41.04 13.07

The Voicing False Alarm rates can be seen in Figure 11 and Table 10. Of the

polyphonic models, Melodia has a very high VFA rate, whereas Deep Salience and

3.3. Source-Separation Test Set 23

Encoder/Decoder perform much better. In terms of correctly estimating the frames

in a (polyphonic) song as voiced or unvoiced Encoder/Decoder performs better than

any of the models.

3.3 Source-Separation Test Set

This section contains the results of each model being tested on the vocal separated

versions of the original mixed polyphonic tracks from MedleyDB. Source separation

was done using the Open-Unmix tool.

Figure 12: Separation Overall Accuracy

Table 11: Separation Overall Accuracy
Algorithm Type Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 65.21 10.23
pYIN Monophonic 59.79 9.98
SPICE Monophonic 68.74 9.08

Deep Salience Polyphonic 79.70 8.87
Encoder/Decoder Polyphonic 81.17 9.04

Melodia Polyphonic 67.65 11.29

The Overall Accuracy can be seen in Figure 12 and Table 11. Encoder/Decoder

and Deep Salience have similarly high accuracies of around 80%. Note that each

24 Chapter 3. Results

of the polyphonic models performs better on the source-separated data set than on

the original polyphonic mixes.

Figure 13: Separation Raw Pitch Accuracy

Table 12: Separation Raw Pitch Accuracy
Algorithm Type Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 88.50 9.15
pYIN Monophonic 73.17 13.36
SPICE Monophonic 65.26 19.29

Deep Salience Polyphonic 85.91 10.42
Encoder/Decoder Polyphonic 67.76 17.05

Melodia Polyphonic 71.89 20.24

The Raw Pitch Accuracy can be seen in Figure 13 and Table 12. CREPE is the

highest performing algorithm with 88.5%, with Deep Salience having the highest

performance of the polyphonic models.

The Raw Chroma Accuracy can be seen in Figure 14 and Table 13. The results are

quite similar to the Raw Pitch Accuracy, with CREPE and Deep Salience having

the best performance. There is a large di�erence in the RCA and RPA of Melodia,

signifying that the estimation is being hindered by octave errors.

3.3. Source-Separation Test Set 25

Figure 14: Separation Raw Chroma Accuracy

Table 13: Separation Raw Chroma Accuracy
Algorithm Type Accuracy Value (%) Standard Deviation (%)

CREPE Monophonic 89.30 8.61
pYIN Monophonic 76.07 11.44
SPICE Monophonic 65.61 18.99

Deep Salience Polyphonic 87.20 9.70
Encoder/Decoder Polyphonic 68.55 16.76

Melodia Polyphonic 80.38 12.58

Table 14: Separation Voicing Recall
Algorithm Type Rate Value (%) Standard Deviation (%)

CREPE Monophonic 94.82 4.20
pYIN Monophonic 93.85 5.12
SPICE Monophonic 70.56 17.80

Deep Salience Polyphonic 81.27 13.46
Encoder/Decoder Polyphonic 73.94 15.93

Melodia Polyphonic 89.05 6.94

The Voicing Recall rates can be seen in Figure 12 and Table 11. CREPE, pYIN,

and Melodia each have very high Voicing Recall.

The Voicing False Alarm rates can be seen in Figure 12 and Table 11. Compared

26 Chapter 3. Results

Figure 15: Separation Voicing Recall

Figure 16: Separation Voicing False Alarm

to the monophonic and polyphonic test sets, the VFA rates for the source-separated

set are much higher for the original mono models.

3.4. Example Estimations 27

Table 15: Separation Voicing False Alarm
Algorithm Type Rate Value (%) Standard Deviation (%)

CREPE Monophonic 54.45 8.93
pYIN Monophonic 53.05 14.23
SPICE Monophonic 30.14 10.96

Deep Salience Polyphonic 18.18 10.99
Encoder/Decoder Polyphonic 9.47 9.17

Melodia Polyphonic 35.49 11.64

3.4 Example Estimations

In this section, I provide several �gures of estimations compared to their ground

truth annotations. I chose songs where the estimations are highly accurate and

highly inaccurate in terms of Overall Accuracy and Voicing False Alarm for each of

the monophonic, polyphonic, and source-separated test sets.

Figures 17, 18, and 19 contain calculated estimations of the monophonic, polyphonic,

and source-separated test sets respectively. These �gures demonstrate poor Overall

Accuracies, where unvoiced frames are incorrectly predicted as voiced and pitch

estimations are not within the range of one semitone of the reference frequency.

28 Chapter 3. Results

Figure 17: Minimum OA for Monophonic

3.4. Example Estimations 29

Figure 18: Minimum OA for Polyphonic

30 Chapter 3. Results

Figure 19: Minimum OA for Separation

3.4. Example Estimations 31

Figures 20, 21, and 22 demonstrate high Overall Accuracies, where unvoiced frames

are correctly predicted as unvoiced and pitch estimations are within the range of

one semitone of the reference frequency.

Figure 20: Maximum OA for Monophonic

32 Chapter 3. Results

Figure 21: Maximum OA for Polyphonic

3.4. Example Estimations 33

Figure 22: Maximum OA for Separation

34 Chapter 3. Results

Figures 23, 24, and 25 demonstrate low Voicing False Alarm rates, where unvoiced

frames are correctly predicted as unvoiced.

Figure 23: Minimum VFA for Monophonic

3.4. Example Estimations 35

Figure 24: Minimum VFA for Polyphonic

36 Chapter 3. Results

Figure 25: Minimum VFA for Separation

3.4. Example Estimations 37

Figures 26, 27, and 28 demonstrate high Voicing False Alarm rates, where unvoiced

frames are incorrectly predicted as voiced.

Figure 26: Maximum VFA for Monophonic

38 Chapter 3. Results

Figure 27: Maximum VFA for Polyphonic

3.4. Example Estimations 39

Figure 28: Maximum VFA for Separation

Chapter 4

Discussion

4.1 Discussion

The overall accuracy for CREPE (monophonic) allows a benchmark measure for the

polyphonic algorithms whose accuracies should not exceed CREPE due to the inher-

ent errors that occur when estimating f0 from polyphonic music. While the results do

support previous �ndings that CREPE outperforms pYIN [6], several considerations

must also be taken into account for this analysis. The �rst consideration is that the

CREPE algorithm was trained on several datasets, including MedleyDB. Using the

same data for training and testing the algorithm creates a bias in the performance of

CREPE and could explain why the accuracy of CREPE is signi�cantly higher than

that of pYIN and SPICE. Secondly, the annotation process for MedleyDB includes

manual corrections which do not guarantee a 100% perfect match between the anno-

tation and the audio. Therefore, the results can also be a�ected by some degree of

human subjectivity. Thirdly, algorithm parameters such as the voicing con�dence

threshold (50%) chosen for CREPE and the minimum (65.41 Hz) and maximum

(2093 Hz) frequencies chosen for pYIN may also a�ect the results. For future work,

I recommend �nding an additional dataset, other than the one used in the training

processes of these algorithms, to be used as a test set for evaluation. Ideally, this

dataset would not contain manual annotations, which are subjective and do not

necessarily guarantee a 100% match between the annotation and audio. And the al-

40

4.1. Discussion 41

gorithmic parameters such as voicing con�dence threshold and minimum/maximum

frequencies should be further analyzed to view di�erences in terms of accuracy. I

also propose evaluating the performance of these algorithms on datasets of di�erent

kinds of music including non-western or songs with multiple singers in harmony. It

should also be noted that the Deep Salience model outperforms CREPE in Over-

all Accuracy when tested on the monophonic subset. Even though the model was

originally trained on polyphonic signals, the Deep Salience model can be seen as a

versatile model able to predict pitch with high overall accuracy for both monophonic

and polyphonic signals.

Unsurprisingly, each of the models intended for use on monophonic signals performs

poorly on the polyphonic test set, and their results should be more or less ignored.

The models with the highest overall accuracy on the polyphonic test set are Deep

Salience and Encoder/Decoder. Deep Salience outperforms Encoder/Decoder in

terms of RPA and RCA, however, the Encoder/Decoder model has a higher Voicing

Recall rate. According to this work, Deep Salience is the highest performing model

for both the monophonic and polyphonic test sets and should be considered state-

of-the-art.

Testing each of the algorithms on the vocal source-separated test set shows promis-

ing results. Aside from an increasing VFA rate for SPICE, each of the algorithms

originally intended for monophonic signals (CREPE, pYIN, and SPICE) improve

in every metric when comparing the polyphonic and source-separated estimations.

Thus, these monophonic models (and especially the high-performing CREPE) are

viable candidates for vocal melody estimation when source separation is included

in preprocessing. The pitch-based metrics are comparable between the monophonic

and source separated test sets for CREPE and pYIN, however, there is quite a

large discrepancy between the voicing-based metrics. The VFA for CREPE goes

from 23.39% to 54.45% between the monophonic and source-separated test sets.

Similar results can be seen in the voicing-based metrics of pYIN and SPICE. This

could potentially be attributed to artifacts or noise left in the separated tracks that

the algorithms are not able to correctly label as unvoiced frames. I suggest fur-

42 Chapter 4. Discussion

thering this research by evaluating other test sets using the same processes with

other source separation tools. The algorithms originally intended for polyphonic

signals (Deep Salience, Encoder/Decoder, and Melodia) also each show improve-

ments in Overall Accuracy when comparing the results of the polyphonic test set

to the source-separated test set. Melodia improved in every metric. Deep Salience

improved in RCA, RPA, and VR, however, the VFA rate also increased. Although

the pitch accuracy is higher for the source separation test set, it should be noted

that the process for generating the estimation takes longer than many of the other

applied algorithms. This suggests that source separation may not be suitable for

tasks in which melodic estimation is a time-sensitive matter or in real-time applica-

tions. However, the relative improvements that source separation provides should

not be ignored.

4.2 Conclusions

In this work, I evaluate the performance of several popular f0 estimation algorithms

for the task of singing voice melodic estimation. Estimation of monophonic algo-

rithms provides a benchmark to compare polyphonic models and CREPE is seen

to outperform pYIN and SPICE. Deep Salience performs the best of any of the

polyphonic models and also performs quite well on monophonic signals. The most

accurate models in terms of Raw Pitch Accuracy are CREPE and Deep Salience

when evaluated on a source-separated test set. While the additional process of

source separation can be more intensive than most of the out-of-the-box polyphonic

methods, the pitch accuracy suggests potential room for improvement in the state-

of-the-art when using such models and I suggest further research in this domain.

Bibliography

[1] Poliner, G. E. et al. Melody transcription from music audio: Approaches and

evaluation. IEEE Trans. Audio, Speech, Lang. Processing 15, 1247�1256 (2007).

[2] Moore, B. C. J. An introduction to the psychology of hearing. Academic Press

(2003).

[3] de Cheveigne, A. & Kawahara, H. Yin, a fundamental frequency estimator for

speech and music. The Journal of the Acoustical Society of America 1917�1930

(2002).

[4] Rahman, M. A. & Shimamura, T. Pitch determination using autocorrelation

function in spectral domain. In INTERSPEECH (2010).

[5] Mauch, M. & Dixon, S. Pyin: A fundamental frequency estimator using prob-

abilistic threshold distributions. IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) 659�663 (2014).

[6] Kim, J. W., Salamon, J., Li, P. & Bello, J. P. Crepe: A convolutional represen-

tation for pitch estimation. 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP) 161�165 (2018).

[7] Gfeller, B. et al. Spice: Self-supervised pitch estimation. IEEE/ACM Transac-

tions on Audio, Speech, and Language Processing 28, 1118�1128 (2019).

[8] Salamon, J., Gómez, E., Ellis, D. P. & Richard, G. Melody extraction from

polyphonic music signals: Approaches, applications, and challenges. IEEE Sig-

nal Processing Magazine 118 (2014).

43

44 BIBLIOGRAPHY

[9] Salamon, J. & Gomez, E. Melody extraction from polyphonic music signals

using pitch contour characteristics. IEEE Transactions on Audio, Speech, and

Language Processing 1759�1770 (2012).

[10] Doras, G., Esling, P. & Peeters, G. On the use of u-net for dominant melody

estimation in polyphonic music. In 2019 International Workshop on Multilayer

Music Representation and Processing (MMRP), 66�70 (IEEE, 2019).

[11] Bittner, R., McFee, B., Salamon, J., Li, P. & Bello, J. Deep salience repre-

sentations for f0 estimation in polyphonic music. In 18th Int. Soc. for Music

Info. Retrieval Conf. (Suzhou, China, 2017).

[12] Dong, M., Wu, J. & Luan, J. Vocal pitch extraction in polyphonic music using

convolutional residual network. Proc. Interspeech 2019 (2019).

[13] Gao, Y., Zhang, X. & Li, W. Vocal melody extraction via hrnet-based singing

voice separation and encoder-decoder-based f0 estimation. Electronics 10, 298

(2021).

[14] Défossez, A., Usunier, N., Bottou, L. & Bach, F. Music source separation in

the waveform domain. arXiv preprint arXiv:1911.13254 (2019).

[15] Stoter, F.-R., Uhlich, S., Liutkus, A. & Mitsufuji, Y. Open-unmix - a reference

implementation for music source separation. Journal of Open Source Software

(2019). URL https://doi.org/10.21105/joss.01667.

[16] Hsieh, T.-H., Su, L. & Yang, Y.-H. A streamlined encoder/decoder architecture

for melody extraction (2019). 1810.12947.

[17] Bittner, R. & Bosch, J. J. Generalized metrics for single-f0 estimation evalu-

ation. 20th International Society for Music Information Retrieval Conference

(2019).

[18] Bittner, R. et al. Medleydb: A multitrack dataset for annotation-intensive mir

research. International Society for Music Information Retrieval Conference

(2014).

https://doi.org/10.21105/joss.01667
1810.12947

BIBLIOGRAPHY 45

[19] McFee, B. et al. librosa: Audio and music signal analysis in python. In Pro-

ceedings of the 14th python in science conference, vol. 8 (2015).

[20] Ra�el, C. et al. mir_eval: A transparent implementation of common mir met-

rics. Proceedings of the 15th International Conference on Music Information

Retrieval (2014).

	Introduction
	Melodic Estimation From Monophonic Signals
	Melodic Estimation From Polyphonic Signals
	Source Separation

	Background
	Algorithms
	Evaluation Metrics
	Dataset

	Methods
	Source Separation
	Open-Unmix (umx)

	Estimation
	pYIN
	CREPE
	Melodia
	Deep Salience
	SPICE
	U-Net
	Encoder-Decoder Model with SegNet

	Evaluation

	Results
	Monophonic Test Set
	Polyphonic Test Set
	Source-Separation Test Set
	Example Estimations

	Discussion
	Discussion
	Conclusions

	Bibliography

