Journal article Open Access

Air Quality Prediction by Classification of Supervised Machine Learning

T. R. Saravanan; V. Pavithra; G.Saranya

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">pollutants dataset, GUI results, machine learning, supervised algorithm.</subfield>
  <controlfield tag="005">20211007134830.0</controlfield>
  <controlfield tag="001">5554333</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">department of computer science and engineering,  JEPPIAAR SRR engineering college, Chennai, India.</subfield>
    <subfield code="a">V. Pavithra</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">department of computer science and engineering,  JEPPIAAR SRR engineering college, Chennai, India.</subfield>
    <subfield code="a">G.Saranya</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication(BEIESP)</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">750478</subfield>
    <subfield code="z">md5:c05791243b3928d0c8e607cc99de1174</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-04-30</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">516-521</subfield>
    <subfield code="n">4</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">department of computer science and engineering,  JEPPIAAR SRR engineering college, Chennai, India.</subfield>
    <subfield code="a">T. R. Saravanan</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Air Quality Prediction by Classification of  Supervised Machine Learning</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)D6782049420/2020©BEIESP</subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Generally, air pollution refer to the release of various pollutants into the air which are threatening the human health and planet as well. The air pollution is the major dangerous vicious to the humanity ever faced. It causes major damage to animals, plants etc., if this keeps on continuing, the human being will face serious situations in the upcoming years. The major pollutants are from the transport and industries. So, to prevent this problem major sectors have to predict the air quality from transport and industries .In existing project there are many disadvantages. The project is about estimating the PM2.5 concentration by designing a photograph based method. But photographic method is not alone sufficient to calculate PM2.5 because it contains only one of the concentration of pollutants and it calculates only PM2.5 so there are some missing out of the major pollutants and the information needed for controlling the pollution .So thereby we proposed the machine learning techniques by user interface of GUI application. In this multiple dataset can be combined from the different source to form a generalized dataset and various machine learning algorithms are used to get the results with maximum accuracy. From comparing various machine learning algorithms we can obtain the best accuracy result. Our evaluation gives the comprehensive manual to sensitivity evaluation of model parameters with regard to overall performance in prediction of air high quality pollutants through accuracy calculation. Additionally to discuss and compare the performance of machine learning algorithms from the dataset with evaluation of GUI based user interface air quality prediction by attributes.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.D6782.049420</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 58
Downloads 44
Data volume 33.0 MB
Unique views 57
Unique downloads 43


Cite as