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Abstract

Singing enhancement aims to improve the perceived quality of a singing voice record-

ing in various aspects. Focusing on the aspect of removing degradation such as

background noise or room reverberation, singing enhancement is related to the

topic of speech enhancement. In this work, two neural network architectures for

speech denoising – namely FullSubNet and Wave-U-Net – were trained and evalu-

ated specifically on denoising of user singing voice recordings. While both models

show similar performance as for speech denoising, FullSubNet outperforms Wave-

U-Net on this task. Furthermore, the removal of sound leakage (i.e. reference sig-

nal/accompaniment for overdubbing that becomes audible in the background of a

recording) was performed with a novel modification of FullSubNet. The proposed ar-

chitecture performs leakage removal by taking the signal leading to aforementioned

leakage as an additional input. For the case of choir music and for leakage removal,

this modified FullSubNet architecture was compared to the original FullSubNet ar-

chitecture. Evaluation results show its overall efficacy on leakage removal as well as

significant benefits introduced by usage of the additional input.

Keywords: Singing Enhancement · Speech Enhancement · Denoising · AEC





Chapter 1

Introduction

Over the last decades, Web 2.0 technologies, increasing availability of internet and

mobile devices have revolutionized human interaction. Social networks and (real-

time) communication technologies are omnipresent, but also video games reach a

broad audience. While music technology has been constantly evolving along with

software and hardware capabilities, remote collaboration on music has long been

limited to music production tasks. During the Covid-19 pandemic, this audience

has radically increased as larger ensembles could not meet for rehearsals physi-

cally. Especially in the choir community, rehearsals would therefore commonly be

conducted via videotelephony. While social interaction and basic singing exercises

might be possible with such a setup, rhythmically aligned singing and practicing in

the context of polyphony is often impeded by latency and connectivity issues.

1.1 Use Case: Virtual Choir Rehearsal Software

Developed specifically as a platform for rehearsal of choir repertoire, the Cantāmus

app1 represents an alternative rehearsal scenario for choirs. Here, an individual

singer’s repertoire learning process is enhanced by providing synthesised voices as

auditory guidance/reference. As a collaborative effort, individually rehearsed and

recorded parts can be mixed with other choir members’ recordings. The outcome
1Voctro Labs: Cantāmus. https://cantamus.app/

1
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2 Chapter 1. Introduction

would then be a full choir recording of a given piece. Cantāmus was developed

as part of the TROMPA (Towards Richer Online Music Public-domain Archives)

project2, which is an effort to improve accessibility of public-domain digital music

resources through music technology.

Customarily, Cantāmus users practice and record their parts at home. Suboptimal

room environment and recording equipment can lead to audio quality degradations

such as background noise, room reverberation, microphone coloration and distor-

tion. A special kind of background noise in overdub recordings is what, in this

work, we call leakage. This is also commonly referred to as spill, bleed or cross-talk

and describes the case when, in an overdub recording scenario, the reference audio

listened to by a user becomes audible in the recording. In our use case, reference

audio would mean a mix of choir voices and/or accompanying instruments. Regard-

less of the degradation type, mixing of multiple individual degraded recordings can

worsen the perceived disturbance. This can be explained with occurrence frequency

of degradations or with the perceptual concept of critical bandwidth [1]. Given

this situation, quality enhancement on individual recordings is needed to ensure a

pleasant user experience.

1.2 Research Goals

This work focuses specifically on removal of background noise and leakage in the

context of the given use case. Please note that, hereafter, the terms denoising and

leakage removal will be used for those respective tasks.

As a first goal, we want to explore the adaptation of two speech denoising architec-

tures for denoising of singing voice recordings. As explained in Section 2.1, denoising

of speech has been subject to extensive research and the best results were achieved

with deep learning approaches.

Inspired by the work in [2], our second goal is to modify a speech denoising ar-

chitecture to perform leakage removal. In leakage removal, there exists knowledge

2TROMPA: Towards Richer Online Music Public-domain Archives. https://trompamusic.eu/

https://trompamusic.eu/


1.3. Objectives and Structure of the Report 3

about the signal causing the leakage (see Section 2.2). This differentiates leakage

removal from denoising and, accordingly, the modified model must be able to handle

a second input.

1.3 Objectives and Structure of the Report

The report is structured so that a general context is given before the actual work

is presented and evaluated. Therefore, Chapter 1 gives an idea on the motiva-

tion, use case scenario and targeted subproblems. Chapter 2 contains an overview

of related research with an emphasis on deep-learning-based approaches to speech

enhancement. In Chapter 3, all audio data resources utilized are portrayed and

information on their accessibility is given. Chapters 4 and 5 describe the methodol-

ogy for denoising and leakage removal tasks. They both specify how computational

data augmentation was performed to approximate their respective problem scenar-

ios. Specifically, Chapter 4 describes how two speech denoising architectures were

trained and evaluated on denoising of singing voice recordings. Chapter 5 proposes a

modified speech denoising architecture with an additional input for leakage removal

and reports on its training and evaluation process. Results on both tasks are pre-

sented and discussed in Chapter 6. Finally, conclusions and future work are pointed

out in Chapter 7.



Chapter 2

Related Work

This chapter gives an overview of research related to our work on singing (quality)

enhancement. This includes mainly speech enhancement topics, as speech enhance-

ment is naturally related with singing enhancement. In both fields, the general goal

is to optimize the subjective and objective quality of a recording of human voice.

For our work on singing voice, this means that we can draw extensive knowledge

from a recent, well-founded and vivid field of scientific research.

The speech enhancement subproblems of denoising and acoustic echo cancellation

(AEC) are described and similarities are elaborated. Recently published neural

network architectures for denoising are presented.

2.1 Denoising and Source Separation

Speech enhancement subproblems are the removal of degradations such as ambient

noise, room reverberation, microphone coloration, distortion or sound leakage, to

name a few. For the removal of background noise – also commonly referred to as

denoising or noise suppression – the field of audio source separation comes into play.

Source separation is the task of deriving individual sound sources from a mixture of

sounds. The problem here can be mathematically described as follows:

4
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y(t) =
N∑
i=1

xi(t) (2.1)

where y(t) is a musical mixture, xi(t) is the ith of N audio sources and t denotes

time. The musical mixture is assumed to be a summation of multiple sources and

the goal is to derive, given y, the individual sources xi. In denoising, the given

Equation 2.1 can be concretized to:

y(t) = x(t) + n(t) (2.2)

where y(t), x(t) and n(t) denote mixture, clean speech and noise, respectively. In

denoising, the goal is to find a function/model f(y) to derive a best-possible estimate

x̂ of x from knowledge about y.

f(y) = x̂ (2.3)

Mathematically, source separation is an abstraction of denoising and builds the

foundation for it. Both these problems are mathematically underdetermined and

therefore cannot be solved in a conventional way.

Since the year of 2013 [3], neural networks have taken over the field of speech en-

hancement, especially denoising. Normally, the proposed approaches would either

work on 2D Short-time-Fourier-Transform (STFT) spectral representations of au-

dio like in [4] or on 1D time-domain representations like in [5]. The same holds

true for source separation systems. A majority of 2D architectures do only take

into account the magnitude of a signal, such not being phase-aware and literally

reducing the complexity of the time-frequency audio representations at hand. This

property is – despite their success – commonly regarded as a disadvantage of such

networks [6]. On the other hand, there has been research comparing both repre-

sentation approaches that led to similar results on source separation [7]. In recent

publications, discrete cosine transform has been explored. With cosine transform,
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it is possible to achieve an STFT-like audio representation which is real-valued and

implicitly includes phase information [8].

Customarily, networks for speech enhancement use supervised learning: The input

would be speech audio augmented with artifacts such as general background ambi-

ence (for denoising) [3] or convoluted room reverberation (for dereverberation [9]).

The learning target would be the same speech without these artifacts. Resources

like the LibriSpeech corpus [10] provide clean speech and can be augmented with

audio from e.g. Diverse Environments Multichannel Acoustic Noise Database (DE-

MAND) [11] or Aachen Impulse Response (AIR) database [12] to retrieve an input-

target pair for training. Since access to clean speech data is limited, recent publi-

cations suggest including noisy data as an augmentation start point. Input-target

pairs can be derived by using noisy data as target and augmenting it further (e.g.

with more noise) to retrieve a training input [13]. Another approach lies in denoising

the given noisy data with a pre-existing speech enhancement model to retrieve clean

data as a target [4]; using the noisy data as input.

Next to such synthetic augmentation approaches, there exist datasets such as DAPS

or DR-VCTK [14, 15]. They provide samples of clean speech next to samples of

the same speech re-recorded on cellphones within various real-world environments.

While being harder to scale, such data is more realistic and can be valuable for

combinatorial approaches of not only denoising, but also dereverberation and quality

enhancement at the same time.

2.2 Acoustic Echo Cancellation and Leakage Re-

moval

A problem related to denoising is echo cancellation. Mainly problematic in telecon-

ferencing, this describes the situation when a far-end speaker’s voice is played back

at another near-end location and fed back into the microphone of the same near-end

location. This can then again become audible as echo on the far-end speaker’s side.

In such a case, general annoyance and intellegibility can become issues. Acoustic
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echo cancellation (AEC) describes efforts to solve this problem and has been sub-

ject to research since the beginning of teleconferencing technologies [16]. Currently

– conditioned by the public need for remote solutions and the rise of artificial intelli-

gence in speech processing – the field of AEC is undergoing a renaissance [17, 18, 19].

In this, conventional approaches to AEC like adaptive filtering are being replaced

by deep neural networks or improved with the use of artificial intelligence [17].

Preventing far-end signal from being fed back as echo is customarily tackled at the

near-end side; the microphone signal y(t) can be described as:

y(t) = s(t) + d(t) = s(t) + h(x(t)) (2.4)

where s(t) is the near-end speech; d(t) is the acoustic echo, which is assumed to

be the output of a room/degradation filter h applied to the far-end speech x(t).

This might appear as being identical to the problem of denoising (see Equation 2.2),

but the complexity here is that the acoustic echo d(t) has characteristics of human

voice. Moreover, there is knowledge about the far-end speech signal x(t). Since

there is no knowledge about the degradations introduced through h, this problem

is still underdefined. AEC is searching for a function or model f(x, y), which, given

the near-end microphone signal y and far-end signal x, produces a best-possible

estimate ŝ for s.

f(x, y) = ŝ (2.5)

The additional knowledge about x facilitates this source separation task [18] as com-

pared to source separation from just a single mixture (like in Equation 2.1), which

is also called blind source separation. Despite described differences, Westhausen et

al. have exemplarily shown the efficacy of adapting a denoising system to AEC [2].

In their work, the additional input x was incorporated with an approach based on

concatenation of features derived from x and y.

In Section 1.1, we have addressed the problem of sound leakage during overdub
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recording in our use case. Users are listening to reference audio while singing and

this reference audio can become audible in the recording. This problem is very

similar to AEC, differing only in the targeted use case. It can also be described with

Equation 2.3: y(t) would be the user recording (mixture); s(t) the user’s singing

voice; d(t) would be the leaked signal, which is assumed to be the output of a

room/degradation filter h applied to the reference audio x(t). In our case, the user

is listening to synthesized voices and/or orchestra instruments as reference. As is the

case for AEC, this implies voice-alike leakage, but, given the musical nature of choir

music, the reference audio x(t) is highly correlated with s(t) in terms of rhythm,

dynamics and harmonic content; technically spoken: x(t) is highly correlated with

s(t) in the time- and frequency domain. Leakage removal could also be understood

as a problem of vocal extraction, but in our case we need to deal with voice signals

in both singing (foreground) and background music, while, in vocal extraction, voice

is only expected in the foreground signal.

2.3 Network Architectures

In this section, two neural network architectures with shown efficacy in speech en-

hancement, specifically speech denoising, are presented. These are FullSubNet [20]

and Wave-U-Net [21] and were used in our experiments (see Sections 4 and 5).

While, over the years, various works on the Wave-U-Net architecture have produced

competitive results in source separation, denoising and AEC [21, 22, 23, 24, 25],

FullSubNet was recently published, reporting state-of-the-art results on speech de-

noising [20], but not further explored at the time of writing. FullSubNet and Wave-

U-Net are representant members of two families of neural network architectures.

Wave-U-Net is a convolutional U-Net architecture with encoder and decoder blocks

while FullSubNet represents such approaches that utilize recurrent neural networks.

Most recent publications in speech denoising can be assigned to one of those two

families and can be distinguished further based on architectural details, audio fea-

ture representations and loss functions used. Audio feature representations include

various time-domain and frequency-domain representations, which was elaborated
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further in Section 2.1. Loss functions include standard metrics like L1 and L2, but

also signal-to-noise ratio (SNR) or perceptually motivated objective metrics have

been used [26]. In [4], a perceptually-motivated frequency weighting has been ap-

plied to an L1 metric. In [27], a loss function was learned from subjective human

judgements on speech quality. Contrasting to the previously described methods, ad-

versarial networks have also shown to be effective on speech enhancement tasks [28].

Here, loss functions would be replaced or supported by an adversarial discriminator.

2.3.1 Wave-U-Net

As a derivative of 2D U-Net source separation architectures as in [29], Wave-U-

Net [21] adapts the concept of deep convolutional networks for time-domain pro-

cessing of audio signals. The architecture can be studied in Figure 1, it consists

of a number of convolutional layers and can be adapted to speech enhancement by

interpreting the noisy speech signal as a mixture of clean speech and noise, where

clean speech and noise are considered to be separated source signals (as explained

above in Section 2.1). This adaption has been further elaborated and explored

in [23], [22] and [24].

Figure 1: Source separation as performed by Wave-U-Net [21]. Dashed arrows depict
so-called skip connections.

The architecture resembles an encoder-decoder architecture where the downsampling
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blocks form an encoder and the upsampling blocks form a decoder. For each of the

convolutional downsampling blocks, the respective input data is subsampled into

gradually smaller (decimation by factor 2) chunks of a linearly increasing number of

features. This process resembles investigating on the audio with decreasing atten-

tion for temporal detail and increasing interest in meta information. In contrast to

conventional Auto-Encoder architectures, Wave-U-Net – and U-Net architectures in

general – implement the concept of inter-connected layers (or self-attention) through

so-called skip connections. At each stage of depth in the downsampling process, the

output of a block is not only passed on to the block beneath, but also to the corre-

sponding decoding block beside. This implies that each upsampling block contains

data from two respective adjacent layers and concatenates both before further con-

volutional processing. This provides the decoding block with information about the

encoding process that would otherwise be lost and aids the signal reconstruction

process [7].

2.3.2 FullSubNet

In contrast to U-Net architectures, FullSubNet [20] achieves temporal context aware-

ness and depth through LSTM layers and fully connected layers. It manages to ef-

fectively combine processing of standard spectral audio representation with a more

intricate (frequency-domain-)context-informed spectral representation. The authors

decompose FullSubNet into two sub-models: A full-band model Gfull and a sub-band

model Gsub . Gsub resembles the author’s previous work in [30].

At a given time t, so-called full-band output is achieved by processing the normalized

magnitude spectral feature vector Xt (Xt ∈ RF
≥0 where F is the number of frequency

bins) through Gfull . Gfull utilizes two LSTM layers and one fully connected layer be-

fore applying a ReLU activation function. Gsub behaves accordingly, but, in this case,

a sub-band spectral feature matrix is used as input. This matrix consists of F rows

corresponding to F frequency bins. Each of these rows denotes a sub-band x̃t(f):

x̃t(f) = [Xt(f −N), . . . , Xt(f), . . . , Xt(f +N)] (2.6)



2.3. Network Architectures 11

The fth sub-band x̃t(f) is defined as a vector including the 2N frequency bins

neighbouring the fth frequency bin and the fth frequency bin itself. It follows that

the sub-band model input at a time t, x̃t is a matrix of dimensions F × (2N + 1).

This representation is meant to facilitate the discrimination between speech and

noise [30].

Figure 2: The FullSubNet architecture for denoising of speech signals [20]. It rep-
resents a fusion of a full-band model Gfull and a sub-band model Gsub , which both
rely on LSTM layers and dense layers.

Both full-band and sub-band output form a (complex) frequency spectrum and can

be interpreted as audio data just like the input spectrum Xt. Figure 2 depicts how

full-band model Gfull and sub-band model Gsub are brought together to build the

final FullSubNet model. In the final model, the sub-band model Gsub is computed

exactly like before, but the sub-band input matrix is concatenated frequency-wise

with the full-band output Gfull(Xt). The rows x̃′t(f) of this new matrix are similar
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to the previous definition of x̃t(f) (Equation 2.6):

x̃′t(f) = [Xt(f −N), . . . , Xt(f), . . . , Xt(f +N), Gfull(Xt)(f)] (2.7)

The full-band output for a specific frequency, Gfull(Xt)(f) can be considered a scalar

value. It follows that the sub-band model input in the final model, x̃′t is a matrix of

dimensions F × (2N + 2).

While the input is derived solely from the magnitude spectral featureXt, the training

target is a complex ideal ratio mask (cIRM) as described in [31]. This method

implies that, in order to achieve the actual estimate of the original speech, the

complex-valued mask will be multiplied with both real and imaginary parts of the

transformed noisy signal. To estimate such a complex ratio mask, the sub-band

model outputs separate values for its real and imaginary parts, thus forming a

matrix of dimensions F × 2. For further details on complex ideal ratio masking,

please refer to [31].

At the time of writing, the paper for FullSubNet has just been presented in the

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). It reports state-of-the-art results [20] in speech denoising on the DNS

Challenge dataset [32], but has not yet been subject to further research.



Chapter 3

Datasets and Preprocessing

Disclaimer: In order to facilitate data retrieval for future efforts, all datasets are

described with a certain amount of detail and a link is provided where possible. Some

datasets are proprietary and cannot be shared, but are described nonetheless.

In this chapter, the datasets used for our experiments in denoising and leakage

removal are described. Next to singing and speech data, this includes impulse re-

sponses and noise recordings used for data augmentation. Moreover, information

on pre-processing and balancing of data is provided. Any preprocessing steps per-

formed on the described data will be emphasized with bold text and curly brackets.

Preprocessing steps did include (all were optional depending on the nature of each

dataset):

[M][M][M] Exploding multi-channel recordings of n channels to n separate monoau-

ral tracks. This does not only speed up the training process by reducing

data loading times, but also helps in exploiting the variety in measure-

ments originally provided for each dataset.

[S][S][S] Manual selection of a subset of recordings from the given dataset. This

was done to approximate our use case of (overdubbed) singing home

recordings in the best possible way (see Section 1.1).

[T ][T ][T ] Trimming all audio files from a dataset to 60 seconds of length. This

13
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helps speed up the training process by reducing data loading times.

Data derived from preprocessing was further segmented and balanced for the tasks

of training, validation and testing. Note that, for each dataset, data was segmented

in such a way that the underlying categories (e.g. speaker identity, room type) would

be kept distinct between the segments for training, validation and testing. This en-

sures that data from the test/validation set would be unseen by a given model at

each point of the training process. Please refer to tables 1, 2, 3 and 4 for exact

numbers. Note that, in those tables, the bal value indicates which relative propor-

tion of the preprocessed data was actually used after segmentation. An example: A

number of 800 samples (after preprocessing) that would be segmented into segments

including only 600 samples or even 1000 samples would have a bal value of 600
800

= 0.75

or 1000
800

= 1.25, respectively. This refers to the known concept of over/undersam-

pling. It implies either selecting a subset of given data (undersampling, bal < 1) or

copying individual pieces of data to increase its numbers (oversampling, bal > 1).

Undersampling means reduced variety of data, but oversampling does not increase

variety.

3.1 Singing/Speech

Not all data described in this section is available to the public, which is discussed in

Section 7.4; in this work, it was used for training and testing our denoising systems

(see Section 4).

• Singing data from VocalSet1: One publicly available resource for isolated/a-

capella singing voice recordings is VocalSet. It has been published in 2018 and

consists of about ten hours (3615 individual recordings of about 10 seconds in

average length) of monoaural singing voice recordings from 20 singers of mixed

gender (11 male, 9 female) and voice type [33]. It is to mention that an Alto voice

type is not included in VocalSet. Recordings were conducted in a professional

recording booth and captured at a sample rate of 44.1 kHz. Singers were asked to

1VocalSet: A Singing Voice Dataset: https://zenodo.org/record/1193957

https://zenodo.org/record/1193957
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perform excercises including arpeggio, longtone and scale exercises in 16 different

styles (e.g. belt, trill, forte), each on five different vowels (i.e. a, e, i, o, u). Fur-

thermore, excerpts of popular songs (including English and Italian language) were

recorded in three different styles (sung, spoken, vibrato). For exact details and

exemplary classification results, please refer to the referenced paper [33]. [S][S][S]: In

our work, this dataset was used solely for testing. To best approximate real-world

singing scenarios, only the subset with excerpts (139 recordings, 0.8 hours) was

used.

• Singing data from Voctro Labs2: More recordings were retrieved from a

dataset that is property of the company Voctro Labs S.L. Please refer to Section

7.4 on how the unavailability of this dataset could be compensated for by using

VocalSet in future efforts. It consists of about 7.5 hours (5220 recordings aver-

aging about five seconds in length) of multilingual singing voice recordings. The

recording process is comparable to that described in [33] and also leads to monoau-

ral recordings of 44.1 kHz sample rate. Here, singers of all major voice categories

(i.e. including Soprano, Alto, Tenor, Bass) were asked to vocalize written text

excerpts with melodies of their choice. The text excerpts are in the languages of

English, German, Mandarin and Spanish.

• User recordings from Cantāmus: A resource for subjective testing of our

denoising systems was found in user recordings conducted by real users with the

Cantāmus app. [S][S][S]: At the time of writing, it provided 493 monoaural recordings

(8.1 hours), of which an automatic subselection (six recordings) was used for user

testing (Section 4.5). This data is again property of Voctro Labs S.L.

• Speech from VCTK3: The pool of human voice recordings for our experiments

was expanded by including speech data from Voice Cloning Toolkit (VCTK) cor-

pus [34]. It was published in 2017 by members of the University of Edinburgh

and the latest version known at the time of writing is available online. Orig-

inally aimed for text-to-speech synthesis systems and later published for voice

2Voctro Labs S.L.: https://www.voctrolabs.com/
3CSTR VCTK Corpus: https://datashare.ed.ac.uk/handle/10283/3443

https://www.voctrolabs.com/
https://datashare.ed.ac.uk/handle/10283/3443
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Source Pre-
process

Training Validation Testing Total

# len # len # len # len bal
VCTK M 16000 15.0 4000 3.8 0 0 20000 18.8 0.23

Voctro Labs 16000 24.0 4000 4.8 0 0 20000 28.8 3.83
VocalSet S 0 0 0 0 139 0.8 139 0.8 1.0
Cantāmus S 0 0 0 0 6 0.0 6 0.0 1.0
Total 32000 39.0 8000 8.7 145 0.8 40145 48.5 0.43

Table 1: Segmentation of singing and speech data; raw data for experiments on
denoising. Source labels according to Section 3.1. Preprocessing steps are indicated.
###: number of files; len: total length of audio in hours; bal: over/undersampling
proportion segmented

preprocessed
.

cloning, this dataset provides about 41 hours (about 44000 recordings averaging

about three seconds in length) of text-annotated English speech with about 400

sentences per 109 speakers. The recordings were conducted with two different

microphones and in a hemi-anechoic chamber [34]. VCTK samples are published

with a sample rate of 48 kHz and in stereo format. [M][M][M]: Treating each of the mi-

crophone signals as an individual recording, this resource provides approximately

88000 individual recordings of about 82 hours in total length.

Segmentation was performed with an 80/20 split, based on singer/speaker identity.

Training data was balanced to equal numbers of speech and singing. Test data

consists solely of singing datasets (i.e. VocalSet) (see Table 1).

3.2 Choir Singing

Data described in this section is not available to the public, which is discussed in

Section 7.4; in this work, it was used for training and testing our proposed leakage

removal system (see Section 5).

For the task of leakage removal, a good approximation of the real-world use case –

individual singers doing overdub recordings while listening to a synthesised reference

choir and/or instruments – demands the use of polyphonic choir recordings. This

cannot be easily approximated with e.g. randomly combined singing voice recordings

because such an approach would likely imply losing the property of harmonic and
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rhythmic correlation between foreground singing and background music (as men-

tioned in Section 2.2). Therefore, we have gathered multi-track audio resources

specifically targeting choir music.

• Choir recordings from Cantoría: In the scope of the TROMPA project, three

accompanied pieces (i.e. Soprano, Countertenor, Tenor, Bass, Organ) had been

recorded for a workshop together with the vocal quartet Cantoría [35]. The out-

come were about 23 minutes of monoaural audio, containing 15 individual tracks

with an average length of about 90 seconds. Although not being extensive for

training a neural network, this data was used for evaluation of our leakage re-

moval system (see Section 5.6).

• Synthesised choir recordings from Cantāmus: At the time of writing, 148

choir pieces with diverse instrumentations had already been synthesised for the

Cantāmus app, thus being property of Voctro Labs S.L. This is a resource of 612

monoaural synthesised voice tracks and 137 instrumental accompaniment tracks,

all averaging about 160 seconds in length. It yields about 33 hours of audio, which

was sufficient as a starting point for data augmentation applied in training and

testing of the proposed leakage removal system (Section 5.1). The voice tracks

are synthesised with the voice types Soprano, Countertenor, Tenor and Bass ; the

accompaniment tracks include sounds of various non-percussive orchestra instru-

ments. [S][S][S]: Seven files were duplicates and therefore a total of 742 files from this

resource have been used.

Segmentation was performed with an 80/20 split, based on piece identity. Singer

identities overlap between training and validation. Test data consists of real record-

ings from Cantoría, while training data includes only synthesised voices. No balanc-

ing was applied (see Table 2).

3.3 Impulse Responses

IRs (impulse responses) can be used to simulate certain recording scenarios such

as room reverberation or microphone coloration. For our experiments, we have
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Source Pre-
process

Training Validation Testing Total

# len # len # len # len
Cantoría 0 0 0 0 15 0.4 15 0.4

Cantāmus Syn S 592 26.3 150 6.7 0 0 742 33.0
Total 592 26.3 150 6.7 15 0.4 759 33.4

Table 2: Segmentation of choir singing data; raw data for experiments on leakage
removal. Source labels according to Section 3.2. Preprocessing steps are indicated.
###: number of files; len: total length of audio in hours.

retrieved RIRs (room IRs) and MIRs (microphone IRs) from various sources. The

RIRs have been individually curated to fit our use case, so RIRs measured in e.g.

very large rooms have been neglected. This data was used for experiments in both

denoising and leakage removal.

• RIRs from the ACE challenge4: The Acoustic Characterization of Environ-

ments (ACE) challenge 2015 was an effort to tackle the automatic characterization

of acoustic environments. For this, seven real-world room environments (e.g. of-

fice, building lobby) have been measured with six different microphone setups

(e.g. phone, microphone array; including consumer devices) in two different spa-

tial positions, each measurement sampled at 48 kHz [36]. [M,S][M,S][M,S]: ACE provides

84 RIRs, of which 48 were selected for our purposes. Treating each microphone

channel (recordings were made with microphone arrays of up to 32 channels)

separately, we can derive 408 monoaural RIRs.

• Aachen Impulse Response (AIR)5: First published in 2009 and later enlarged,

this database provides binaural RIRs from eleven real-world acoustic environments

(e.g. office, lecture room) [12, 37]. To capture binaural sound, IRs were recorded

with multiple microphones at various distances to the sound source. As waveform

audio, AIR includes a total of 344 individual IR recordings corresponding to eight

environments, each sampled at 48 kHz. [S][S][S]: For our purposes, we have selected a

subset of 68 RIRs from AIR.

4Acoustic Characterisation of Environments: THE ACE CHALLENGE: http://www.ee.ic.ac.
uk/naylor/ACEweb/

5Aachen Impulse Response Database: https://www.iks.rwth-aachen.de/en/research/
tools-downloads/databases/aachen-impulse-response-database/

http://www.ee.ic.ac.uk/naylor/ACEweb/
http://www.ee.ic.ac.uk/naylor/ACEweb/
https://www.iks.rwth-aachen.de/en/research/tools-downloads/databases/aachen-impulse-response-database/
https://www.iks.rwth-aachen.de/en/research/tools-downloads/databases/aachen-impulse-response-database/
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• RIRs from the REVERB challenge6: Measured RIRs have been shared as

part of the REVERB challenge 2014, which was an effort to evaluate then state-of-

the-art dereverberation and automatic speech recognition methods [38]. A number

of 24 RIRs were measured at 16 kHz, in six different room conditions, with four

different microphone positions and with an eight-channel microphone array [39].

[M,S][M,S][M,S]: Treating each microphone channel as a separate source, this collection

provides 192 RIRs, 64 of which were elicited for our work.

• OpenSLR Simulated Room Impulse Response Database7: These simu-

lated RIRs have been shared as part of work done by Ko et al. in 2017 [40]. The

RIRs were created with an RIR generator tool provided by AudioLabs Erlan-

gen [41]. [S][S][S]: The collection provides 60000 monoaural IRs sampled at 16 kHz, of

which 20000 were selected for our experiments.

• Vintage Mics8: This collection includes 65 vintage (e.g. AKG D12) MIRs from

30 manufacturers, all of them originally shared by the Microphone Impulse Re-

sponse Project (MicIRP) [42]. The MIRs were captured as monoaural audio at

44.1 kHz and 48 kHz; recordings were conducted in a small, acoustically treated

booth (surrounding the microphone at about 30 cm distance) [42].

RIR segmentation was based on room identity, MIR segmentation was based on

microphone identity. For each dataset, individual splits were performed. Test data

originates only from one dataset for both MIR and RIR. Balancing was applied to

provide even numbers between datasets in the case of training (see Table 3).

3.4 Noise profiles

Noise audio can be used to degrade signals with additive noise. We retrieve noise

recordings from various sources. The noise audio files have been individually curated

to fit our use case. Therefore, noise recorded in e.g. a subway environment or very

reverberant environments has been neglected.
6TrainData from the REVERB challenge: http://reverb2014.dereverberation.com/tools/
reverb_tools_for_Generate_mcTrainData.tgz

7OpenSLR: Simulated Room Impulse Response Database: https://www.openslr.org/26/
8AudioThing: Vintage Mics: https://www.audiothing.net/impulses/vintage-mics/

http://reverb2014.dereverberation.com/tools/reverb_tools_for_Generate_mcTrainData.tgz
http://reverb2014.dereverberation.com/tools/reverb_tools_for_Generate_mcTrainData.tgz
https://www.openslr.org/26/
https://www.audiothing.net/impulses/vintage-mics/


20 Chapter 3. Datasets and Preprocessing

Source Pre-
process

Training Validation Testing Total

# # # # bal
ACE M,S 400 100 0 500 1.23
AIR S 400 0 0 400 5.88

REVERB M,S 400 0 0 400 6.25
OpenSLR S 400 100 100 600 0.03
RIR-Total 1600 200 100 1900 0.09
Vintage Mics 45 10 10 65 1.00
MIR-Total 45 10 10 65 1.00

Table 3: Segmentation of RIR and MIR data; raw data for experiments in denoising
(RIR) and leakage removal (RIR+MIR). Source labels according to Section 3.1.
Preprocessing steps are indicated. ###: number of files; len: total length of audio in
hours; bal: over/undersampling proportion segmented

preprocessed
.

• Noise from the ACE challenge: These noise profiles can be retrieved following

the same link as described in Section 3.3 and were shared as material for the

ACE challenge 2015, utilizing the recording setup described above. For each

room, microphone and microphone position, three noise types (i.e. ambient, fan,

babble) were recorded, thus leading to 252 individual noise profiles of 13.6 hours in

length [36]. [M,S, T ][M,S, T ][M,S, T ]: For our purposes, only the 84 fan profile recordings were

selected, each trimmed to 60 seconds (original: 171 seconds on average), totalling

1.4 hours in length; this yields 710 individual monoaural channels with a total

length of about 11.8 hours.

• DEMAND9: Diverse Environments Multichannel Acoustic Noise Database (DE-

MAND) provides about 24 hours of noise recordings in 18 different real-world en-

vironments; environments including indoors (e.g. a cafeteria) and outdoors (e.g.

a park). Recordings were conducted with a 16-channel microphone-array and

sampled at 48 kHz [11]. [S, T ][S, T ][S, T ]: For this work, out of the 18 scenarios, 5 were se-

lected, yielding 80 monoaural tracks. All those tracks were trimmed to 60 seconds

(original: 300 seconds), so a subset of about 1.7 hours was used in our work.

• Noise from the REVERB challenge: Next to RIRs, noise profiles have been

shared as part of the aforementioned REVERB challenge (see Section 3.3). Un-

9DEMAND: a collection of multi-channel recordings of acoustic noise in diverse environments:
https://zenodo.org/record/1227121

https://zenodo.org/record/1227121
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der similar circumstances as described above (here, 10 instead of 4 microphone

positions were used), 60 samples (30 minutes) of static room background noise,

mainly originating from air conditioning systems, was recorded [39]. [M][M][M]: Treat-

ing each microphone channel as a separate source, this collection provides 480

noise profiles with a total length of 4 hours.

• Laptop Noises from Freesound10: Freesound [43] is a community-based plat-

form for sharing audio samples of all sorts. It has an API to query and download

audio files, which was used to search for noise recordings provided under the CC0

license. With the query terms ‘laptop mic’, ‘mic hit’, ‘keyboard click’, ‘computer

fan’ and ‘laptop fan’ and manual selection we were able to retrieve 55 audio files

of 31 minutes in length. These are assumed to be beneficial for simulating pos-

sible noise degradations of user recordings; especially static fan noise and hits to

the case/microphone of the end user device. These recordings have sample rates

between 16 kHz and 48 kHz, but more detailed recording conditions are not docu-

mented. [S, T ][S, T ][S, T ]: 44 of them are stereophonic, so there are a total of 99 monoaural

channels with a length of 56 minutes available.

Segmentation was performed based on room identity/environment. Data retrieved

from Freesound was just split based on recording identities (Freesound ID). For

each dataset, individual splits were performed. Test data originates from multiple

datasets to provide a variety of noise profiles. Balancing was applied such that the

case-specific data retrieved from Freesound would be overrepresented by a factor of

two (see Table 4).

10wimmerb: Laptop noises from Freesound https://github.com/wimmerb/laptop_noise_
freesound/

https://github.com/wimmerb/laptop_noise_freesound/
https://github.com/wimmerb/laptop_noise_freesound/
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Source Pre-
process

Training Validation Testing Total

# len # len # len # len bal
ACE M,S, T 280 4.7 60 1.0 60 1.0 400 6.7 0.56

DEMAND S, T 280 4.7 60 1.0 60 1.0 400 6.7 5.00
Freesound M 560 6.1 120 1.1 120 0.8 800 7.9 8.01
REVERB M 280 2.3 60 0.6 0 0 340 2.8 0.71
Total 1400 17.8 300 3.6 240 2.8 1940 24.1 0.71

Table 4: Segmentation of noise data; raw data for experiments on denoising. Source
labels according to Section 3.4. Preprocessing steps are indicated. ###: number
of files; len: total length of audio in hours; bal: over/undersampling proportion
segmented

preprocessed
.
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Methods for Denoising

Two deep learning architectures with demonstrated efficacy in denoising of speech,

FullSubNet [20] and Wave-U-Net [22, 23], were compared on denoising of singing

voice recordings. To achieve comparable results, they were each specifically trained

and tested on singing audio of the same origin and nature, augmented with the same

techniques.

Below, we will be using the following notations:

xxx Clean (reverberant) singing/speech signal, also referred to as target

yyy Mixture of target signal x and noise n, also referred to as input

nnn Noise profile

hhh Room impulse response (RIR)

In general, the models were trained with input-target pairs of noisy data y and clean

data x, where y is derived by adding a noise n to x (see Equation 2.2). As described

below, 75% of the clean target data x was reverberant.

All audio processing in this chapter was done on monoaural audio with a sample

rate of 16 kHz (Wideband audio). Audio data after preprocessing (see Chapter 3)

will be referred to as raw data.

23
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4.1 Data Augmentation

For each data point tuple (x, y) of training data, the following augmentation/pro-

cessing stack was used and dynamically applied on x to compute y. For each aug-

mentation technique, the percentage of samples it was applied to is given next to

a more detailed description. For all random numbers mentioned, discrete numbers

would be drawn from a uniform distribution within the given range. Note that some

augmentations affect not only input data y, but also target data x.

• Silent target. 1%: To simulate the scenario of unvoiced excerpts, the target

x is silent. Through x = 0, it follows that y = n. In this case, the rest of the

augmentation stack is ignored.

• Pass. 5%: Signals that are already of ideal quality should be preserved.

We seek to minimize f(x)− x by not applying any noise to the target signal.

In this case, the rest of the augmentation stack is ignored (but this case is

overshadowed by the above case of ‘silent target’).

• Pitch shift. 25%: Random pitch shift between -800 cent and 800 cent (cor-

responding to 17 semitones) is applied to the noise n. The purpose of this is

to enhance the general variety in our noise profiles, covering real-world cases

where noises are resonant in very low/high frequencies.

• Reverberation. 75%: Using a reverberant target. Given a clean signal x′

we derive the target x = h ∗ x′ through convolution with an RIR h. This

is done accordingly in [20] and targets robustness to non-optimal recording

conditions. As described in Section 3.3, some of the given RIRs implicitly

target microphone coloration from consumer devices.

• Levelling. 100%: Between target x and noise n, a random SNR (signal-to-

noise ratio) between -3 dB and 25 dB was established to form y. Note that

the SNR range includes negative values, opening the possibility for very noisy

scenarios. Thereafter, y was levelled to a random level between -35 dBFS and

-15 dBFS; of course, x was leveled proportional to the levelling of y to ensure
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correctness of Equation 2.2. Here, dBFS is the amplitude-oriented measure of

decibels relative to full scale.

• Subsampling. 100%:. For each audio (voice, noise) sample from the raw

data, a randomly positioned snippet of 16384 (1.072 seconds; for Wave-U-Net)

or 41952 samples (3.072 seconds; for FullSubNet) in length was taken to create

an individual data point. Note that the lengths are multiples of the Wave-U-

Net input size, which facilitates evaluation.

4.2 Training and Experimental setup

The process described here was applied on both Wave-U-Net and FullSubNet. Raw

data segments for training and validation were derived from singing and speech

data (see balancing in Table 1); for the origins of noise and RIR data, please refer

to tables 3 and 4. During training, the described augmentations were applied to

the raw data dynamically, coupling random files from the mentioned voice, noise

and RIR sources. The convolution processing was sped up by convolving 10 raw

singing/speech samples and 10 RIRs simultaneously instead of doing convolutions

piece by piece. One such batch convolution would produce 10×10 = 100 reverberant

samples that could then be used for the case of reverberant target data described

above (Section 4.1).

After each training epoch, objective validation scores were computed on a validation

set and closely monitored for manual selection of a best model. For the scores, we

used the metrics of SI-SDR, STOI and PESQ, which are described in section 6. To

ensure comparability between epochs and in contrast to the training process, the

validation set, consisting of 400 parallel data point tuples (x, y) was pre-computed.

Therefore, random files from raw data segments (voice, noise and RIR; see tables 1, 3

and 4) for validation were coupled and augmented. Augmentations were conducted

in the same way as training data, but disregarding the ‘silent target’ technique (see

Section 4.1), which would otherwise inhibit the correct computation of the SI-SDR

metric.
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4.3 Wave-U-Net: Configuration

The configuration used is identical with the configuration in the original Wave-U-Net

paper [20]. The Wave-U-Net was configured to have a depth of 12 layers with kernel

sizes of 15 for the downsampling blocks and 5 for the upsampling blocks. Hence, a

signal providing 1 feature of size 16384 is decomposed into 288 features of size 4 and

reconstructed to the original shape. The described configuration yields about 10.13

million parameters. Training was performed with a batch size of 16. The Adam

optimizer with a learning rate of 0.0001 and decay rates of β1 = 0.9 and β2 = 0.999

was applied. After early stopping, its learning rate was adjusted to 0.00001 for

fine-tuning, which is accordance with the original paper [21]. Training objective was

the mean squared error (MSE) on each batch as waveform data (16 × 1 × 1684).

A Pytorch implementation [44] targeting the adaption of Wave-U-Net for Speech

Enhancement (according to [22]) was used.

4.4 FullSubNet: Configuration

The configuration used is identical with the configuration in the original FullSubNet

paper [20]. For the two LSTM layers of full-band and sub-band separation blocks, a

unit size of 384 and 512 was used, respectively. This configuration yields about 5.64

million parameters. Audio was transformed to an STFT representation, utilizing

Hanning windows of FFT size 512 samples and a hop size of 256 samples. Together

with the aforementioned sample lengths, this would produce 192 frames per sample.

A look-ahead of 2 frames was chosen to predict the current frame, which therefore

describes a semi-causal approach. Training was performed with a batch size of 16.

The Adam optimizer with a learning rate of 0.001, decay rates of β1 = 0.9 and

β2 = 0.999, and gradient norm clipping of 10 was applied, which is in accordance

with the original paper [20]. Training objective was the mean squared error (MSE)

measured on the predicted complex ideal ratio mask for each STFT frame and per

batch (16 × 192 × 512 × 2; batch size × frames × FFT size × complex axis). The

official Pytorch implementation of FullSubNet was used [45].
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4.5 Evaluation Methods

Objective and subjective evaluations have been conducted on one synthetic test set

(objective and subjective evaluations) and one real-world test set of noisy singing

voice recordings (only subjective evaluations).

For objective evaluation, the metrics of SI-SDR, STOI and PESQ were applied by

computing their averages over a test set. As opposed to the mathematically moti-

vated SI-SDR measure, PESQ and STOI (described in Chapter 6) have been found

to correlate with human perception on quality and intellegibility of speech [46, 47],

thus giving us an impression on general perceived voice and audio quality. Singing-

specific metrics like PESnQ [48] were disregarded, as they partly reflect pitch cor-

rectness, whereas pitch is not subject to any modifications in our experiments. All

objective evaluations would be conducted on augmented (noisy) and enhanced data.

The test set (200 instances of parallel data clean/noisy) was pre-computed with the

same data augmentation techniques as for training, but disregarding the ‘silent tar-

get’ technique (see Section 4.1). Raw data for the test set was derived from the

unseen VocalSet and an unseen split of noise and RIR files (see tables 1, 3 and 4).

Those raw files were randomly coupled for augmentation.

For subjective evaluation, two tests were conducted with a consistent set of 20

volunteers. The testing environment has been created with an adaption of the

listening test framework BeaqleJS [49, 50].

As a test on real world data, user recordings from the Cantāmus app (see Section 3.1)

have been judged by the volunteers. The expenses for mean opinion score testing

as specified in ITU-T P.808 [51] would unfortunately not have been feasible for this

work, so we have decided to ask the volunteers for their ACR (absolute category

rating) on noisy and enhanced versions of six user recordings. ACR is part of the test

ensemble recommended by ITU-T P.808 and measures subjective opinions on speech

quality within the categories Bad, Poor, Fair, Good and Excellent corresponding to

discrete scores from 1 to 5. For the test’s visual appearance, please refer to Figure 3.
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Figure 3: ACR testing: Participants were asked to listen through all Test Items
and then rate them based on perceived quality and absence of noise. Note that the
slider ‘snaps’ to discrete positions according to the given categories.

Furthermore, a small set of six random audio subsamples from the described syn-

thetic test set have been evaluated with a test similar to MUSHRA (MUlti Stimulus

test with Hidden Reference and Anchor) [52]. In MUSHRA, participants are asked

to judge any and all differences between specific audio samples (conditions) and a

(clean) reference sample, on scale from 0 to 100. One of the conditions is the refer-

ence itself, which is called hidden reference. MUSHRA also introduces the concept

of hidden anchor, which means adding deliberately degraded versions of the clean

reference to the set of conditions. Reporting results on these hidden reference and

anchor conditions should facilitate interpretation/comparability of other test results.

Originally proposed to evaluate quality of e.g. transmission systems or audio codecs,

MUSHRA could not be adapted in its entirety to the evaluation of denoising sys-

tems. We propose the following test (see Figure 4): From our parallel test data,

we have used the clean audio as a reference and as a condition (hidden reference).

However, a purposefully degraded hidden anchor derived from the reference signal

would not have been expedient. We have not used such a hidden anchor per se, but

instead have added the noisy signal as a condition, which was believed to fulfill the

anchor’s function as a lower reference point. The other conditions were enhanced

signals from Wave-U-Net and FullSubNet. Moreover, the original MUSHRA test

divides its 101-point judgment scale into the qualities Bad, Poor, Fair, Good and
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Figure 4: MUSHRA-like testing: After listening through the Reference and all
Test Items, participants were asked to rate any and all detected differences
between the reference and the test item on a scale from Very Different (0) to
No Difference (100).

Excellent, a practice which has been subject to criticism due to potential biases [53].

As a reaction to that, we have chosen to use only two labels – Very Different and

No Difference – for respective scale ends.
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Methods for Leakage Removal

As explained in Section 1.1, leakage removal and AEC describe the removal of arti-

facts that originate from listening to other audio (i.e. background music/accompa-

niment or far-end speech) while recording. This resembles the problem of denoising,

but with the difference that, here, we have knowledge about the signal leading to

the degradation. In [2], a novel approach in AEC has been presented by exploiting

the same relationship between denoising and AEC. There, a pre-existent denoising

architecture was modified to retrieve and include information from a second input.

Inspired by this, we have adapted a FullSubNet denoising architecture to leakage

removal. The proposed architecture represents a FullSubNet architecture with two

parallel inputs. It was trained specifically for the application of leakage removal

on our use case. On this task, it was evaluated against a conventional FullSubNet

baseline model.

Hereafter, we will be using the following notations; please refer to Section 2.2 with

equations 2.4 and 2.5 for a thorough explanation on their particular relationships:

yyy A leakage-degraded user recording; referred to as noisy signal

xxx Original reference audio causing leakage audible in y

sss The user recording without leakage degradation; referred to as target

30
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or clean signal

hhh A room/degradation filter (applied to x)

f(x, y)f(x, y)f(x, y) The proposed neural model f , that, given x and y (same as above)

should predict ŝ, a best-possible estimate on s

ŝ̂ŝs The prediction produced by f (through complex time-frequency mask-

ing of y)

The proposed model was trained on triplets of s, x and y, where x and y would be

used as model inputs and s was the target audio. The baseline model, which has no

additional input, was trained only on pairs of y and s. Note that the actual training

target for FullSubNet is a complex ideal ratio mask, which, when applied to the

noisy signal y, would produce s (see Section 2.3.2). Referring to s as the target is

therefore a simplification for readability.

All audio processing in this chapter was done on monoaural audio with a sample

rate of 16 kHz (Wideband audio). Audio data after preprocessing (see Chapter 3)

is referred to as raw data.

5.1 Data Augmentation

In our scenario of overdub choir recordings (described in Section 1.1), the clean

audio s and reference audio x include choir voices (s and x) as well as instrumental

accompaniment (only x). To approximate s and x for a real-world scenario, raw data

for training and validation was taken from choir/instrumental excerpts synthesised

for the Cantāmus app (see Table 2). Therefore, the choir excerpts used during

training are not taken from real singing voice recordings. Below, individual instances

of raw audio will also be referred to as tracks.

We start by describing how data for s and x was combined. Hereafter, we will refer

to the following definitions (next to the ones defined above).

rrr A raw audio track with r ∈ R
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RRR The set of all raw audio tracks (see Table 2)

T (r)T (r)T (r) The voice type of a given raw audio track r. The voice types include

Soprano, Alto, Tenor, Bass and Accompaniment

P(r)P(r)P(r) The choir piece that a raw audio track r was originally synthesised for.

Given the polyphonic nature of choir music, multiple tracks from R can

belong to the same piece

lll The sample length (duration) of subsamples. All subsamples of a data

point triplet (s, x, y) have the same length l

ttt The time index t, with 0 ≤ t < l

trtrtr The subsample offset within a signal r. Thus, r(tr + t) defines a sub-

sample of r, starting at tr and with a length of l

To create an individual data point (triplet of s, x and y), we needed to first find

suitable candidates for s and x before creating a noisy sample y from those. To re-

trieve a candidate for s, we would search for a voiced subsample of a random vocal

track.

s(t) = r(ts + t) with T (r) 6= Accompaniment (5.1)

where ts is the start of the voiced subsample in r. As described below, the retrieval

of voiced subsamples was done with a naive algorithm. In the use case, the refer-

ence x would originate from a mix of tracks of various voice types (including the

voice type of s itself) and instruments, which are all time-aligned with each other

and with s. Naturally, the reference audio would be from the same piece as s.

Hence, we could define our candidate for x as follows:

x(t) =
∑
r∈R̂

r(ts + t) with R̂ ⊆
{
r ∈ R | P(r) = P(s)

}
(5.2)

Note that x(t) is time aligned with s as ts is the sample start for each r. The pool

of raw files for x, R̂, is defined as a subset of all tracks from piece P (s), which
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Figure 5: Sampling scenarios: (a) Aligned: A voiced subsample (yellow) of the
Tenor voice is found and used as target audio s; material for reference audio (black
window, all voices) must be from the same piece and cover the same time frame
as s. (b) Random: Voiced subsamples are found for random excerpts of all voice
types; one of them is chosen as foreground audio (yellow), all of them (grey, yellow)
are eligible as material for the reference audio.

includes s itself. Defining R̂ as a subset of all tracks from a piece simulates user-

specific selection of individual reference tracks, which is a feature in the Cantāmus

app. For a visual representation of this process, please refer to the aligned scenario

in Figure 5. However, to achieve greater variety in the training data, this use-case

oriented aligned scenario was reinforced with a scenario of mixing samples regardless

of their alignment. Here, voiced subsamples for x were derived from random tracks

of disjunct voice types.

x(t) =
∑

r∈R̂ r(tr + t)

with R̂ ⊆ R and ∀r, r′ ∈ R̂. r 6= r′ =⇒ T (r) 6= T (r′)
(5.3)

Note that tr is not fixed, as we were specifically looking to retrieve voiced sub-

samples. Also note that no sample of voice type T (s) other than s(ts + t) was

allowed in R̂. This scenario is not musically meaningful. It provides combinations

of x and y that are harmonically and rhythmically less coherent than the use case

data, which implies smaller correlation in the time domain and frequency domain.

In our implementation, the source selection for x was performed by randomly select-

ing five synthesised tracks, one from each voice group. A subset of those five would

then be selected and randomly positioned voiced parts would be found for each. The
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process is visualized in Figure 5 in the random scenario. For s, we used only voiced

excerpts, which is explained below in the augmentation step subsampling. For each

instance of s, x would either be derived from other time-aligned choir voices/accom-

paniment from the same piece as s or from randomly sampled voiced excerpts of the

raw data.

To be able artificially create a noisy signal y from s and x, x was degraded with a

room filter h and then mixed with s (see Equation 2.4). RIRs and MIRs from various

sources (see Table 3) had been pre-selected to simulate h by means of convolution.

Therefore, various RIRs and MIRs were convolved with each other in a chain. Let

Hr be the set of all RIRs and Hm be the set of all MIRs, then the filter h applied

on a signal x can be defined as:

h(x) = hm, 0 ∗ . . . ∗ hm,M ∗ hn, 0 ∗ . . . ∗ hn,N ∗ x

with hr, i ∈ Hr; hm, i ∈ Hm; M ∈ {0, 1, 2}; N ∈ {0, 1}; M +N 6= 0
(5.4)

Then, in analogy to Equation 2.4, a noisy user recording y was approximated:

y = s+ h(x) (5.5)

Note that we assume the leakage in the mixture, h(x), and x to be time-aligned.

In a real world scenario, the problem of time-alignment needs to be solved before

or during application of the proposed system. To preserve the property of time

alignment between h(x) and x, the transients of all impulse responses were aligned

to start at t = 0. Moreover and contrary to Section 4 we assume that the recording

scenario happens in a quiet room, i.e. no room degradation is applied to s.

After defining the relations and nature of s, x and h, we can proceed to describe the

augmentation/processing stack. Augmentation was dynamically applied. For each

augmentation technique, the percentage of samples it was applied to is given next to

a more detailed description. For all random numbers mentioned, discrete numbers

would be drawn from a uniform distribution within the given range.

• Silent target. 1%: To simulate the scenario of unvoiced parts in the user
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recording, the target s is silent. Since s = 0, it follows that y = h(x).

• Target in reference. 10%: It was ensured that s ∈ x in only 10% of the

cases. The most problematic case in training was when s = x.

• Degradation filtering. 100%: As described above, combinations of RIRs

and MIRs were convolved with each other and x to form h(x) (see Equation 5.4).

The numbers of MIRs and RIRs in each degradation were randomly chosen

from hard-coded options, M ∈ (0, 1, 2) and N ∈ (0, 1, 1). If both values were

0, an RIR was applied regardless. It follows that an RIR was included in h

in 7
9
of the cases, while the number of MIRs in h was uniformly distributed

between 0 and 2.

• Levelling. 100%: Between target s and noisy signal y, a random SNR

between 6 dB and 20 dB was established to form y. Note that the SNR

range includes negative values, opening the possibility for very noisy scenarios.

Thereafter, y was levelled to a random level between -35 dBFS and -15 dBFS;

of course, x was leveled proportional to the levelling of y to ensure correctness

of Equation 2.2. Here, dBFS is the amplitude-oriented measure of decibels

relative to full scale.

• Sampling scenarios. 50%/50%: For each data point, one of the sampling

scenarios aligned and random (see Figure 5) was randomly selected and ap-

plied.

• Voiced Subsampling: For each audio sample r from the raw data selection R̂,

a randomly positioned voiced snippet of 3 seconds in length was taken. The

aforementioned retrieval of voiced subsamples was achieved with a naive algo-

rithm. It would jump to randomly positioned time frames in the tracks and

analyse the absolute amplitude; based on the portion of individual samples

surpassing a certain threshold, the signal would then be classified as voiced.

A track is disregarded if there is no voiced candidate found after 10 tries. In

the aforementioned (see Figure 5) aligned scenario, this algorithm was only be
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applied to s, in the random scenario it was applied to all tracks that give rise

to s and x.

5.2 Architecture

As stated before, a major difference in the problem statements of denoising and leak-

age removal is the existence of knowledge about the signal x causing the degradation.

With that in mind, we propose a model that is a simple adaptation of FullSubNet

(see Section 2.3.2) for two inputs (reference audio x and noisy recording y). Given

the results on the denoising task (Section 6.1), FullSubNet was considered a promis-

ing candidate for such an adaptation.

Full-band and sub-band models both essentially stay the same as for the original

FullSubNet, with two LSTM layers followed by a linear (fully connected) layer (and

a ReLU activation in the case of full-band). Input features for full-band and sub-

band processing are analogous to the original, but are concatenated with information

about the additional input, thus generally being of larger sizes in our adaptation.

Normalization is treated for each input source separately, which implies the necessity

of handling normalization before handing the respective input features to the full-

band and sub-band models. The adapted workflow is explained below and depicted

in Figure 6.

Hereafter, we will be using the following definition for the STFT magnitude spectral

feature of a signal z:

Z̃ = (Z1, . . . , Zt, . . . , ZT ) ∈ RT×F
≥0 (5.6)

Where Zt ∈ RF
≥0 is the magnitude spectrum of an STFT frame at time t, with F

frequency bins. T is the number of STFT frames or time steps. Before full-band

processing, STFT magnitude features X̃ and Ỹ of x and y are normalized by point-

wise division with their respective mean scalar value (i.e. the new mean value of all

scalars in X̃ would be 1). The full-band input Nfull , t at a point in time t would

then be a concatenation of the (normalized) STFT magnitude spectra for Xt and Yt
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Figure 6: The proposed modified FullSubNet architecture. It is fed with the mag-
nitude spectral features X̃ and Ỹ . This figure shows the workflow for the t th
STFT frame. The second line in each rectangle describes the dimensions of the data
at the current stage. For example, “1 (F )” represents one F-dimensional vector.
“F (4N + 3)” represents F independent (4N + 3)-dimensional vectors. Grey boxes
indicate submodels Gfull and Gsub .
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(corresponding to x and y):

Nfull , t = [Xt(0), . . . , Xt(F − 1), Yt(0), . . . , Yt(F − 1)]T ∈ R2×F
≥0 (5.7)

Nfull = (Nfull , 1, . . . , Nfull , t, . . . , Nfull , T ) ∈ RT×(2×F )
≥0 (5.8)

Here, Nfull is the full-band input aggregate over all time frames, in analogy to

Equation 5.6. Full-band output Gfull(Nfull) is achieved by applying the full-band

model Gfull to Nfull . Full-band output at time t is then defined Gfull(Nfull)t. Essen-

tially recreating a spectral output, full-band output Gfull(Nfull) ∈ RT×F yields the

same shape as its inputs X̃ and Ỹ and is normalized in the same way again.

To retrieve the sub-band feature Nsub , the sub-band features x̃ and ỹ would need to

be derived from X̃ and Ỹ . The time-aggregated sub-band feature z̃ for a signal z is

defined as:

z̃ = (z̃1, . . . , z̃t, . . . , z̃T ) (5.9)

Here, z̃t is the sub-band feature for time t. It can be derived from its STFT magni-

tude feature Zt as described in Equation 2.6. Aggregated sub-band features x̃ and ỹ

are each normalized, again by point-wise division with their mean scalar value. The

time-aggregated sub-band input Nsub is derived by frequency-wise concatenation of

x̃, Gfull(Nfull) and ỹ. For a given time t and for a given center frequency f , an entry

Nsub, t(f) can therefore be described as:

Nsub, t(f) = [Xt(f −N), . . . , Xt(f +N),

Gfull(Nfull)t(f),

Yt(f −N), . . . , Yt(f +N)]T ∈ R4×N+3

(5.10)

This is in analogy to Equation 2.7. Here, N is the number of neighbouring frequen-

cies above and below f . For a center frequency f , the sub-band input aggregate

Nsub(f) is retrieved in analogy to Equation 5.6:

Nsub(f) =
(
Nsub, 1(f), . . . , Nsub, t(f), . . . , Nsub, T (f)

)
∈ RT×(4×N+3) (5.11)
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Corresponding to the number of frequency bins in X̃ and Ỹ , F independent sub-

band input representations are created. The sub-band model Gsub is then applied

on Nsub(f) for each center frequency f ∈ F . Hence, by aggregating F iterations of

Gsub(Nsub(f)) ∈ RT×2, the complex ratio mask for ŝ, cRMŝ ∈ RT×F×2 is generated.

5.3 Training and Experimental Setup

Training data was retrieved and augmented as described above (see Section 5.1).

Therein, raw audio files for x were batch-convoluted, such that individual convoluted

files could then be combined with each other (distributive property of convolution).

This way, multiple combinations of s and x could be derived from a single set of raw

data, combinations both varying in subsample positions and raw sample selection

for x (referring to the values ts, tr and R̂ from Section 5.1). This procedure was

meant to accelerate the augmentation process.

After each training epoch, objective validation scores were computed on a validation

set and closely monitored for manual selection of a best model. Multiple objective

validation scores were computed on a validation set after each training epoch and

closely monitored to select a best model manually. For the scores, we used the met-

rics of SI-SDR and PESQ, which are described in section 6. To ensure comparability

between epochs and in contrast to the training process, the validation set, consisting

of 97 data triplets (noisy/reference/target), was pre-computed. Therefore, raw files

(choir excerpts and IR; see tables 2, 3) were coupled and augmented. Augmentations

were conducted in the same way as for training data, but disregarding the ‘silent

target’ technique (see Section 5.1), which would otherwise inhibit the correct compu-

tation of the SI-SDR metric. Furthermore, subsample lengths of 5 seconds and the

aligned sampling scenario was chosen. The number of 97 data points corresponds

to 97 voice recordings existent in the raw data for validation.
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5.4 Model Configuration

The proposed model was trained with what was essentially the same configuration as

for the original FullSubNet (see Section 4.4). For the two LSTM layers of full-band

and sub-band separation blocks, a unit size of 384 and 512 was used, respectively.

This configuration yields about 6.21 million parameters, which, due to changes in

input sizes of full-band and sub-band models is slightly more than for the original

FullSubNet. Audio was transformed to an STFT representation, utilizing Hanning

windows of FFT size 512 samples and a hop size of 256 samples. Together with

the aforementioned subsample lengths, this would produce 188 frames per sample.

A look-ahead of 2 frames was chosen to predict the current frame, which therefore

describes a semi-causal approach. Training was performed with a batch size of 16.

The Adam optimizer with a learning rate of 0.001, decay rates of β1 = 0.9 and

β2 = 0.999, and gradient norm clipping of 10 was applied. Training objective was

the mean squared error (MSE) measured on the predicted complex ideal ratio mask

for each STFT frame and per batch (16×188×512×2; batch size × frames × FFT

size × complex axis). The proposed model was implemented with Pytorch; a link

to the implementation is given in Section 7.4.

5.5 Baseline

As stated before, the Baseline model was the original FullSubNet model. In this, the

additional information on x would be ignored during training and the model would

be trained on just one input (f(y) = ŝ). The configuration was the same as above,

but with smaller input sizes, such yielding about 5.64 million parameters and being

compliant to the denoising setup from Section 4.4.

5.6 Evaluation

Objective and subjective evaluations have been conducted on two pre-computed

test sets with real recordings from Cantoría (see Section 3.2). Therefore, in general,

unseen raw audio files (choir excerpts and IR; see tables 2, 3) were coupled and
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augmented. Augmentations were conducted in the same way as for training data, but

disregarding the ‘silent target’ technique (see Section 5.1), which would otherwise

inhibit the correct computation of the SI-SDR metric. To model the use case, only

the aligned sampling scenario from Section 5.1 was chosen.

Objective evaluation was performed with respect to different SNR levels, so six

individual test sets with the SNR settings of 0dB, 5dB, 10dB, 15dB, 20dB and

mixed were applied; 48 data triplets have been generated for each. The metrics of

interest in objective testing were SI-SDR and PESQ, which are commonly used for

AEC tasks. In contrast to Section 4.5, the STOI metric was not used as it was found

to be disturbed by the presence of multiple voice signals.

Subjective evaluation was conducted with the same 20 volunteers mentioned in Sec-

tion 4.5. The test set for subjective evaluation consisted of 6 data triplets of 5

seconds in length. The MUSHRA-like test described in Section 4.5 was performed,

with s as hidden reference and the noisy signal y as lower reference point. The other

test conditions were the FullSubNet baseline and the proposed model.



Chapter 6

Results & Discussion

In this section, results of our work are presented and discussed. This is done task by

task. For each task, the results will be presented followed by a short interpretation.

The evaluation methodology to obtain results is explained in sections 4.5 and 5.6.

Subjective evaluations were conducted with a population of 20 volunteers, of which

all have answered our user study and returned their results.

Metrics used for evaluation are:

SI-SDR Scale-Invariant Signal-to-Distortion Ratio: An adaption of the SNR

metric that is robust to scaling errors [54], which is measured in dB.

PESQ Perceptual Evaluation of Speech Quality: An objective metric origi-

nally designed to evaluate quality of speech transmitted through telecom-

munication networks [55]. Although first published in 2001, its efficacy

on audio coding and source separation has recently been demonstrated

[46]. The value range can vary between implementations. In our case,

values lie between 1.02 and 4.56 (worst to best).

STOI Short-Time Objective Intelligibility: This objective measure is highly

correlated with subjective intelligibility of human speech [47]. Values

lie between 0 and 1 (worst to best).

42
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ACR Absolute Category Rating: A subjective rating of audio quality within

the categories Bad, Poor, Fair, Good, Excellent, corresponding to val-

ues from 1 to 5.

BAQ Basic Audio Quality: A subjective judgement on differences between

a reference recording and a test item [52]. In this work, BAQ was

measured between the attributes Very Different and No Difference, on

a scale from 0 to 100. Please refer to Section 4.5 for details.

6.1 Denoising

Starting with the task of Denoising, Table 5 shows the results for objective evaluation

on a synthesised test set, on metrics PESQ, STOI and SI-SDR. Information on the

nature of this dataset is provided in Section 4.5.

Model PESQ STOI SI-SDR

Noisy 1.91 0.72 11.41
Wave-U-Net 2.29 0.73 16.67
FullSubNet 3.233.233.23 0.790.790.79 19.7219.7219.72

Table 5: Objective evaluation results for denoising: Measured on a synthesised
test set, enhanced with Wave-U-Net and FullSubNet. Noisy signal evaluated for
reference.

Figure 7 shows results for subjective evaluations on real user recordings (described in

Section 3.2) as well as the aforementioned synthesised test set. The real-world data

and synthesised data had been judged on ACR (see Figure 3) and BAQ (see Figure 4)

metrics, respectively. We can observe that both Wave-U-Net and FullSubNet seem

to successfully remove noise. This observation is affirmed mainly by results on the

PESQ, SI-SDR and ACR metric. However, only FullSubNet seems to consistently

achieve quality improvements on all given combinations of test set and metric. Given

its results on STOI and BAQ, such a property could be doubted for Wave-U-Net.

However, the BAQ results show a flooring effect with positive skewness for results

on noisy and Wave-U-Net enhanced signals. Similarly, the category for clean signals

was affected with a ceiling effect. This can lead to a violation of the property of



44 Chapter 6. Results & Discussion

Noisy FSNet WUNet

1

2

3

4

5
A

C
R

(a)

Noisy FSNet WUNet Clean

0

50

100

B
A

Q

(b)

Figure 7: User evaluation of the denoising task. (a): Absolute Category Rating on
real user recordings. (b): Basic Audio Quality on synthesised recordings (similar
to MUSHRA). Conditions (with label): Noisy; FullSubNet (FSNet); Wave-U-Net
(WUNet); Clean.

normality even in a well-balanced MUSHRA testing setup [56]. The high correlation

that we experience between noisy and Wave-U-Net enhanced signals may likely be

caused by such an effect, impeding a direct comparison between the two categories.

The most salient observation is, that, by all measures, FullSubNet achieves the best

results on this specific task of denoising user singing voice recordings.

6.2 Leakage Removal

For the task of leakage removal, Table 6 shows the results for objective evaluation

on multiple synthesised test sets, on metrics PESQ and SI-SDR. The test sets were

all synthesised with the same methodology, but given different SNR target levels.

Please refer to Section 5.6 for more information. Figure 8 shows results for subjec-

tive evaluations on a synthesised test set. The test set is described in Section 5.6.

Performance had been judged on the BAQ metric (see Figure 8). Figure 9 shows

exemplary results as spectrograms on one data point of the synthesised test set.

We can observe that, generally, both the proposed model and baseline model seem

to succeed at enhancing subjective and objective quality on the test set. While, for

the proposed model, this becomes very clear by all measures taken, improvements

achieved by the baseline model tend do be insignificant in some occasions. This

is especially true for the 0dB SNR category, which both models were not trained
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Metric Model 0dB 5dB 10dB 15dB 20dB mixed

SI-SDR
Noisy 0.00 4.99 12.07 15.00 21.61 13.04

Baseline 2.10 12.13 15.03 18.45 22.30 16.41
Proposed 10.9110.9110.91 22.2722.2722.27 22.8622.8622.86 25.2125.2125.21 29.5129.5129.51 23.0523.0523.05

PESQ
Noisy 1.50 2.25 2.24 2.45 3.16 2.65

Baseline 1.52 2.34 2.52 2.98 3.63 2.91
Proposed 2.302.302.30 3.373.373.37 3.773.773.77 4.144.144.14 4.354.354.35 3.883.883.88

Table 6: Objective evaluation results for leakage removal: Measured on synthesised
test sets of various SNR levels and one with mixed SNR; enhanced with the baseline
FullSubNet architecture and its proposed adaption. The noisy signal was evaluated
for reference.

for (they were trained on SNRs of 6 dB to 20 dB). In subjective testing, the afore-

mentioned flooring and ceiling effects are noticeable, but it can be stated that the

proposed model’s outputs are closer to the clean reference than to the noisy input.

The opposite holds true for the baseline model.

Spectrograms in Figure 9 indicate that the additional model input improves the

removal of leakage, especially in places where the foreground voice is currently silent.

Frequencies that are particularly close to the harmonics of the foreground signal

seem to pose a problem for both models. They are reduced, but tend to yield new

artifacts for both models. This effect is less noticeable for the proposed model.
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Figure 8: User evaluation of the leakage removal task: Basic Audio Quality on syn-
thesised recordings. Conditions correspond to Section 5: Noisy and clean references
were used to compare the proposed model against a baseline model.

Noisy Baseline

Proposed Clean

Figure 9: Four spectrogram excerpts for leakage removal: Noisy and clean references
in comparison to enhancement with the proposed model and baseline model. Red:
Highlighted differences in harmonic filtering and artifacts. A close look reveals that
both models introduce a new harmonic peak that does not exist in the noisy signal.
Yellow: Highlighted differences for an unvoiced scenario.
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Conclusions

7.1 Conclusions

In this thesis, we have studied neural network approaches for speech denoising in

their adaption to singing enhancement tasks. These include denoising and leakage

removal of user recordings in the context of a choir rehearsal software. We have found

that the denoising capabilities of Wave-U-Net and FullSubNet on speech translate

effectively to the domain of singing voice. Clearly, the best results on this task were

achieved by FullSubNet. Furthermore, we have proposed and evaluated a modifica-

tion of FullSubNet for leakage removal. Introduction of an additional model input

with reference audio resulted in significant improvements over a blind separation

approach.

7.2 Contributions

We have elaborated and implemented a training methodology with which we can

effectively train and compare FullSubNet and Wave-U-Net architectures on denois-

ing of singing recordings (see Chapter 4). Furthermore, we have implemented a

modification of FullSubNet that allows for effective leakage removal (see Chapter 5).

A training methodology for leakage removal with this network was elaborated and

implemented. Both training methodologies could be used to train other neural net-

47
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work architectures in their respective domain. Next to these contributions in singing

enhancement, the modified FullSubNet architecture could present a novel approach

in AEC, which is yet to be examined (see Section 7.3).

7.3 Future Work

At this point, we have explored enhancement of user singing recordings on the

aspects of leakage and background noise. Generally, other degradations like room

coloration/reverberation or microphone distortion can be subject to further research.

Furthermore, the separation of tasks could be repealed. The network presented

in [2] examplifies, how AEC and denoising are performed simultaneously. To target

a combination of coloration, reverberation and background noise degradation types,

a dataset like DR-VCTK [15] with real-world device-recorded audio could be used

for training.

In this work, the leakage removal task was trained to handle perfectly synchronized

pairs of reference audio and noisy recording. In a real-world scenario, this can only

be ensured to a certain extent, e.g. by compensating for a device’s round trip time

and/or performing cross-correlation on the audio pair after recording. To effectively

cope with leakage in a real-world setup, the model would need to be trained on cases

with a slight delay between reference audio input and noisy recording or vice versa.

Furthermore, the leakage removal task has not been evaluated on real-world data.

This could be done on user recordings coupled with information on the reference

audio used.

Given the similarities of leakage removal and AEC, the proposed modified FullSub-

Net architecture could be evaluated against other AEC systems on leakage removal.

Likewise, it could be trained and evaluated against other AEC models in the domain

of AEC.
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7.4 Reproducibility

All code needed to reproduce our experiments is available on online1. This resource

includes the following materials:

• Code for Chapter 3: Scripts for preprocessing and preselection of audio data

• Audio for Chapter 3.4: Laptop noise profiles retrieved from Freesound

• Code for Chapter 4 on denoising: An identical training process for application

with both Wave-U-Net and FullSubNet. This includes data augmentation and

objective evaluation methods.

• Code for Chapter 5 on leakage removal: Implementation of the proposed ar-

chitecture together with the specified training process. This includes data

augmentation and objective evaluation methods.

• Code for subjective testing: Modifications on the BeaqleJS framework accord-

ing to Section 4.5.

• Results: Audio examples and trained weight configurations for all assessed

combinations of models and tasks

However, due to the use of proprietary datasets, results are not entirely reproducible.

The training process for denoising relies on singing data from Voctro Labs. This

could be replaced by the similar data from VocalSet (to compare both datasets,

please refer to Section 3.1). Similarly, the training process for leakage removal relies

on multitrack choir singing data from Voctro Labs. For the unaligned case from Sec-

tion 5.1, this data could simply be replaced by data from a non-multitrack singing

resource like, again, VocalSet. However, data for the aligned scenario must be de-

rived from multitrack resources. Two such publications are the Dagstuhl ChoirSet

[57] and the Choral Singing Dataset [58]. In combination, they would provide five

multitrack-recorded choir pieces sung by 29 singers of four voice types. A compre-

hensive list of more such resources is provided in [57].
1wimmerb: Quality Enhancement of Overdub Singing Recordings https://github.com/
wimmerb/singing-quality-enhancement

https://github.com/wimmerb/singing-quality-enhancement
https://github.com/wimmerb/singing-quality-enhancement
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