Journal article Open Access

Improved Chicken Swarm Optimized Recurrent Neural Networks for Big Data Intrusion Detection System

P.Sudha; R.Gunavathi


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Deep learning, Intrusion Detection Systems, Improved Chicken Swarm Optimization, Recurrent Neural Networks.</subfield>
  </datafield>
  <controlfield tag="005">20211007134830.0</controlfield>
  <controlfield tag="001">5553755</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Master of Computer Science and Applications,  Sree Saraswathi Thyagaraja College, Pollachi - 642 107, Tamil Nadu, India.</subfield>
    <subfield code="a">R.Gunavathi</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering  &amp; Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">515196</subfield>
    <subfield code="z">md5:a3f57dffdd1825517cf606d9ffb91a4d</subfield>
    <subfield code="u">https://zenodo.org/record/5553755/files/C6551029320.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-04-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5553755</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">326-332</subfield>
    <subfield code="n">4</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Computer Science, Sree Saraswathi  Thyagaraja College, Pollachi - 642 107, Tamil Nadu, India.</subfield>
    <subfield code="a">P.Sudha</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Improved Chicken Swarm Optimized Recurrent  Neural Networks for Big Data Intrusion  Detection System</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)C6551029320 /2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Cyber security threats are an ever increasing, frequent and complex issue in the modern information era. With the advent of big data, incremental increase of huge amounts of data has further increased the security problems. Intrusion Detection Systems (IDS) were been developed to monitor and secure the cyber data systems and networks from any intrusions. However, the intrusion detection is difficult due to the rapid evolution of security attacks and the high volume, variety and speed of big data. In addition, the shallow architectures of existing IDS models lead to high computation cost and high memory requirements, thus further diminishing the efficiency of intrusion detection. The recent studies have suggested the use of data analytics and the deep learning algorithms can be effective in improving the IDS. An efficient IDS model is developed in this study by using the improved Elman-type Recurrent Neural Networks (RNN) in which the Improved Chicken Swarm Optimization (ICSO) optimally determines RNN parameters. RNN is an efficient method for classifying network traffic data but its traditional training algorithms are slow in convergence and faces local optimum problem. The introduction of ICSO with enhanced global search ability significantly avoids those limitations and improves the training process of RNN. This optimized deep learning algorithm of RNN, named as ICSO-RNN, is employed in the IDS with Intuitionistic Fuzzy Mutual Information feature selection to analyze larger network traffic datasets. The proposed IDS model using ICSO-RNN is tested on UNSW NB15 dataset. The final outcomes suggested that ICSO-RNN model has high performance in intrusion detection, with minimum training time and is proficient for big data.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.C6551.049420</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
38
14
views
downloads
Views 38
Downloads 14
Data volume 7.2 MB
Unique views 34
Unique downloads 14

Share

Cite as