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Abstract—Software defined networking (SDN) aims to stan-
dardize the control and configuration of network infrastructure.
It consolidates network control by moving the network’s control
plane to a (logically) centralized controller and downgrading
switches to simple forwarding devices. This offers huge ad-
vantages for future automotive Ethernet networks, including
admission control (e.g. to prevent/limit congestion) or network
reconfiguration (e.g. in case of faults), both based on a cen-
tralized view of the current network state. SDN’s centralized
architecture, however, requires additional communication, which
entails a certain overhead. If SDN is used in safety-critical real-
time networks, this communication is subject to strict timing
requirements. In this paper, we present a formal analysis based
evaluation of the general suitability of SDN for time-sensitive
networks including overhead, scalability, and timing guarantees
by using a realistic automotive setup.

I. INTRODUCTION

Ethernet is considered to become the communication back-
bone for future automotive networks, as traditional buses such
as CAN or FlexRay cannot keep pace with the increasing
bandwidth and scalability requirements of advanced driver
assistance systems and infotainment systems. The introduction
of Ethernet enables access to a large set of concepts and
protocols from other Ethernet domains, such as SDN [1].

The main idea of SDN is the separation of a network’s
control and data planes. The data plane is responsible for frame
forwarding, e.g. the switch fabric and flow (forwarding) table,
while the control plane makes the actual routing decisions and
configures the data plane accordingly. In SDN, the network’s
control plane (red components in Figure 1) is consolidated
in a (logically) centralized SDN controller and only the data
plane (blue components in Figure 1) remains in the switches.
The SDN controller runs a network operating system, which
manages and controls the entire network by configuring the
switches. Inside an SDN switch, there is an SDN agent. This
agent implements the communication with the SDN controller
and updates the flow table inside the switch. The content of
this flow table defines the forwarding operations performed
by the switch’s data plane, i.e. which incoming traffic stream
(identified for example by source and destination addresses
and/or port numbers) is forwarded to which output port.

Its centralized architecture allows SDN to realize globally
optimal network management based on the current network
state. As each switch communicates directly with the SDN
controller, there is no need for complex (and potentially
lengthly) distributed network control protocols (e.g. (rapid)
spanning tree protocol or shortest path bridging), which first
have to reach a common understanding of the network state
before they can take appropriate actions. Applications of
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centralized network management include admission control
(e.g. to prevent/limit network congestion by blocking non-
or less-critical traffic) and run-time reconfiguration (e.g. to
recover from faults in safety-critical networks by rerouting
critical traffic around a failed component or link). The latter
becomes increasingly important with the advent of highly
automated and autonomous driving, where current fail-safe
safety strategies must be replaced by fail-operational ones.

If SDN is used to manage real-time networks, it is subject
to strict timing requirements. Admission control must be able
to decide in bounded time if a traffic stream is allowed to enter
the network. Safety-critical systems usually demand an upper
bound on the fault recovery time. This is usually defined to
be the time from the occurrence of a fault until it has been
resolved. It comprises the time to detect the fault and the time
to execute counter measures such as network reconfiguration.
The AVnu Alliance suggests a fault recovery time of less
than 100ms for critical automotive control applications [2].
Other sources suggest less than 50ms [3]. Real-time systems
require the verification of these timing requirements. Here,
formal worst-case analysis methods are typically chosen over
simulation-based approaches, as simulation usually does not
guarantee to expose all corner cases, whereas a formal analysis
gives safe upper bounds on a system’s worst-case behavior.

The contribution of this paper is the evaluation of the
general suitability of SDN for real-time Ethernet. For that pur-
pose, we discuss two protocols for basic SDN-based network
configuration. We show how these protocols can be modeled
and formally analyzed in a compositional performance analy-
sis (CPA) framework [4]. Finally, we evaluate each protocol
regarding its timing guarantees, impact on other traffic streams,
and scalability by using a realistic automotive Ethernet setup.

II. RELATED WORK

SDN is an emerging topic in time-sensitive Ethernet. The
upcoming Ethernet TSN standards propose the introduction
of SDN concepts. IEEE P802.1Qca [5] defines the explicit
computation of (potentially redundant) paths by a (central)
path computation element (PCE). In SDN terms, the PCE acts
the SDN controller. IEEE P802.1Qcc [6] proposes centralized
network configuration for time-sensitive networks. As these
standards are still in their draft phase, we focus on the general
suitability of SDN for Ethernet with real-time constraints.



Ethernet AVB’s stream reservation protocol (SRP) [7] de-
fines a distributed admission control scheme. SRP allows the
reservation of network resources at the switches along a path
from a sender to its receiver(s). However, the decision if a
stream is allowed to enter the network is made locally at the
involved switches. Particularly, there is no central control over
when a sender is allowed to advertise a traffic stream or when
a receiver is allowed to subscribe. Also, as there is no central
controller with global network view in SRP, fault recovery
cannot be implemented as efficiently as in SDN. Unlike SDN,
SRP does not allow to (re)configure flow tables.

An extensive survey of SDN is given in [1]. The authors
give a comprehensive overview of SDN, covering current stan-
dardization activities, interfaces, controllers, network program-
ming languages, and applications. SDN interfaces define the
communication between the SDN controller and the switches.
The most prominent SDN interface is OpenFlow [8]. It defines
a communication protocol (including the frame format) along
with the flow table layout in the switches. OpenFlow, however,
relies on TCP-based communication, which is less suitable for
latency-critical real-time traffic because its complex handshake
and flow control mechanisms contribute significantly to the
overall latency. Real-time traffic is typically UDP-based.

In [3] a fast fault recovery mechanism for SDN is presented.
This mechanism uses link-based bidirectional forwarding de-
tection to detect link faults and OpenFlow’s Fast Failover
Group feature to reroute traffic. This feature allows a switch,
in case of a link failure, to autonomously alter its flow table
to a preconfigured backup route. As this failover mechanism
is based on a purely local decision, the backup route might be
suboptimal and typically involves crankback routing, i.e. re-
turning traffic towards its source while trying alternative paths
to reach the destination [3]. Because this recovery process
does not involve communication with the SDN controller, it
enables fast fault recovery (the authors measured 3.3ms in a
simulation-based evaluation). Communication with the SDN
controller might still be required to replace the preliminary
backup route with a (better) final one. Naturally, this method
cannot be applied to admission control. Also, a simulation-
based evaluation cannot replace a formal timing verification.

A network calculus based formal analysis of the com-
munication between an SDN controller and SDN switches
focusing on SDN controlled (i.e. admission controlled) traffic
is presented in [9]. The authors derive upper bounds on the
frame delay in switches as well as the buffer sizes in the SDN
controller. Compared to their analysis model, which models
SDN controller and SDN switches (each) as single resources
(network calculus servers), we present a much more elaborate
analysis model. Our model considers that switches have, in
fact, multiple ports, which, in turn, have multiple traffic queues
(one per Ethernet priority), and that all ports of a switch
share a single SDN agent (see Figure 1). We also explicitly
model that the SDN controller and SDN agents have limited
processing resources (CPUs), which, as we will see, contribute
significantly to the timing guarantees of SDN traffic.

Specifically, we derive worst-case timing guarantees for
two basic SDN network configuration protocols. In contrast
to [9], we take into account that, as part of these protocols,
the SDN controller might have to reconfigure the network by
distributing new forwarding rules to individual switches and
wait for their acknowledgment. This reconfiguration takes time
and contributes significantly to a protocol’s overall latency.

Furthermore, we evaluate the overhead of introducing SDN,
i.e. we evaluate the impact of SDN traffic on non-SDN traffic.

SDN performance has also been studied by using queueing
theory (e.g. [10]). The probabilistic performance guarantees
given by queueing theory, however, are unsuitable to derive
worst-case metrics for real-time networks.

III. COMPOSITIONAL PERFORMANCE ANALYSIS

We use CPA [4] to analyze the worst-case behavior of
SDN communication. The CPA system model comprises three
components: resources, tasks, and event models. Resources
model processing or network resources (e.g. CPUs or switch
ports) and provide service according to a scheduling policy.
Tasks are mapped to resources and compete for their service.
Per activation, a task consumes service varying between its
best- and worst-case execution time. Task activations are
abstracted by event models. An event model is defined by
a tuple of event arrival functions η−(∆t) and η+(∆t), which
give the lower and upper bounds on the number of events
(task activations) in any half-open time interval [t,t+ ∆t). In
contrast to a specific event trace, an event model captures all
possible event arrival scenarios within its bounds. A system is
modeled as a directed graph, where tasks correspond to nodes
and task dependencies are modeled by edges. Whenever a task
finishes its execution, it propagates an event to its dependent
task(s), i.e. its output event model becomes the input event
model of its dependent task(s). If a task activation depends on
events from multiple tasks, these events must first be joined by
a junction with AND semantic [4]. Tasks without predecessors
must be stimulated by an event model from an external source.

CPA is an iterative approach. Resources are analyzed by
a local analysis based on the busy period approach [11].
In this approach, new output event models for each task
are derived from a critical instant scenario. This scenario
maximizes the response time of the currently analyzed task
by activating interfering tasks with their worst-case activation
(and execution) pattern. The response time jitter (maximum
minus minimum response times) can be used to derive new
output event models [4]. A global analysis loop propagates
event models between dependent tasks. The analysis ends, if
all event models reach a fixed-point (do not change anymore).
The analysis also ends if predefined constraints (e.g. number
of analysis iterations or end-to-end latencies etc.) are violated,
in which case the system is considered to be unscheduable.

IV. MODELING AND FORMAL ANALYSIS OF SOFTWARE
DEFINED NETWORKING

The focus of this paper is the evaluation of the general
suitability of the SDN concept for real-time networks. As SDN
(exemplified by OpenFlow) was not designed with real-time
requirements in mind, we propose a simplified (but analyzable)
SDN scheme. We differ from OpenFlow in two key points:
(a) As discussed in Section II, UDP is typically chosen over
TCP to transport latency-critical traffic. Hence, we present
two UDP-compatible protocols to realize SDN-based network
control. (b) In Section V, we argue that certain messages are
assumed to be smaller than in OpenFlow.

A. SDN-based Network Configuration
SDN network control is stream-based (also called flow-

based in SDN literature). A traffic stream is defined to be a
sequence of frames between a source and a destination, which
receive identical service policies in the network [1]. In this



paper, we assume that the data plane (inside the switches) is
controlled by flow tables similar to OpenFlow’s [8]. Each flow
table entry comprises three fields: rule, action, and statistics
(frame counters etc.). Incoming frames are matched against
the rules to determine the traffic stream they belong to, e.g. by
their MAC and/or IP addresses, VLAN ID, or TCP/UDP ports.
Rules are implicitly prioritized by their order of appearance
in the flow table to resolve ambiguities. Actions define how a
frame should be treated. Possible actions include: forward the
frame to a specific switch port, drop the frame, and request
further instructions from the SDN controller on how to handle
the frame. Network configuration in SDN is the process of
creating and distributing these flow table entries, e.g. when a
new request has been received by the SDN controller.

We discuss the explicit flow configuration protocol in Fig-
ure 2a, exemplified by admission control. In an admission
control scenario, traffic streams are either allowed to enter
the network (forward action), blocked (drop action), or must
request admission before entering the network (request action).
We are interested in the worst-case timing behavior of the
request action. When the first frame (Frame 1 in Figure 2a)
of an incoming traffic stream arrives at Switch 1, this switch
determines (based on its current flow table) that this stream
requires admission control and generates a request (req) ad-
dressed to the SDN controller. The SDN controller receives
the request and checks if this stream is allowed to enter
the network. In case the stream is denied network access,
the controller notifies Switch 1 immediately (not shown in
Figure 2a). If the controller decides to grant network access
to the stream, the network must be (re)configured to support
this new traffic stream. For this, the SDN controller sends
configuration messages (conf ) to all involved switches to
update their flow tables. These configuration messages can
carry multiple flow table updates, so that, for example, new
forwarding rules for the requesting traffic stream and dropping
rules for other (now obsolete) traffic streams can be distributed
concurrently. Each switch must confirm this update via an
acknowledgment (ack) message to the SDN controller. The
controller must wait for all acknowledgments (hatched time
interval in Figure 2a) before it finally sends the confirmation
(en) to Switch 1 to enable the flow table entries, which allow
the requesting traffic stream to enter the network.

Each step of this protocol introduces a certain delay. The
processing delay on the CPUs of the SDN agents and the SDN
controller (the step’s actual execution time plus interference
from other requests) is (symbolically) indicated by the red
boxes. Communication is done via Ethernet and experiences
delay (own frame transmission times plus interference from
other traffic streams) in the network, which is indicated by the
blue arrows. The entire network configuration process from
the arrival of the first frame of a traffic stream to its final
admission has a certain SDN configuration latency R+

SDN .
From the perspective of the requesting traffic stream, the

network configuration latency R+
SDN of the explicit flow con-

figuration protocol can be hidden by configuring the network
before this stream enters the network. However, this does not
reduce the actual configuration latency and only works if the
network change is known beforehand. In automotive systems,
however, communication scenarios are typically predefined at
design time. So, alternatively, all switches could be preconfig-
ured to support all possible traffic streams. Admission control
for a given traffic stream can then be realized by enabling

SDN
Controller

Switch 1
SDN Agent 1

Frame 1

Switch 2
SDN Agent 2

Switch 3
SDN Agent 3

(a) Explicit flow configuration

Frame 1

SDN
Controller

Switch 1
SDN Agent 1

(b) Predefined flows

Fig. 2. SDN network (re)configuration protocols

or disabling a higher-priority dropping rule in the flow table
of the switch at which this traffic stream enters the network.
This reduces admission control to a simple req/en handshake,
as shown by the predefined flows protocol in Figure 2b.

Fault recovery can be realized by the explicit flow config-
uration protocol, e.g. by switching to a set of preconfigured
alternative flows for a particular fault. Instead of an arriving
frame, the network reconfiguration process is triggered by the
detection of a fault. Here, the switch sending the req message
might be different from the one receiving the en message.

B. Modeling SDN in Compositional Performance Analysis
In this section, we explain how the previously discussed net-

work configuration protocols can be modeled in CPA by using
the example network in Figure 3a. There are two switches, two
ECUs, and one SDN controller. We assume that only switch
S1 sends requests to the SDN controller. Additionally, there is
one non-SDN traffic stream from ECU0 to ECU1.

Figure 3b shows how the explicit flow configuration protocol
from Figure 2a can be mapped to CPA primitives. We model
the processing resources (CPUs) of the SDN agents in the
switches and of the SDN controller as CPA resources. Each
processing step of the protocol is modeled as a task executing
on these resources, e.g. the generation of a request to the SDN
controller is modeled by task τ1r on resource CPU1. The exe-
cution times of these processing tasks depend on complexity
of the work to be performed. The Ethernet communication
follows the CPA model proposed in [12]: We assume that
the arbitration inside switches takes place at the output ports
and, hence, model only these output ports as CPA resources.
Analogously, we model the Ethernet output ports of ECUs and
SDN agents and controllers as CPA resources. Port1.1, for
example, is the output port of SDN Agent 1 towards Switch 1.
The transmission of a frame at an output port is modeled as
a task executing on the output port’s resource. The execution
times of these communication tasks correspond to their frame
transmission time, which, in turn, depends on the frame’s size.
The dependencies between individual protocol steps are mod-
eled as task dependencies. Hence, the protocol can be modeled
as a chain of tasks mapped to the corresponding processing and
communication resources. The synchronization process at the
SDN controller (hatched time interval in Figure 2a) is modeled
by an AND-junction (i.e. wait for all inputs before proceeding)
of the corresponding traffic streams in the CPA model [4]. The
traffic stream from ECU0 to ECU1 shares the Port1.2 resource
with SDN traffic. Hence, there will be interference between
SDN and non-SDN traffic.

CPA derives (among other metrics) worst-case execution
times for each task, based on the interference from other
tasks on the same resource [4], [12]. The SDN configuration
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latency R+
SDN can be derived by computing the end-to-end

path latency from task τ1r at SDN Agent 1 to τ1e . This latency
is upper bounded by the sum of the worst-case execution times
of all tasks along the path. Task τCc forks the SDN request
to trigger the reconfiguration of the individual switches. The
forked paths are rejoined by the AND-junction preceding τCs
to generate the enable message. Hence, to compute an upper
bound on the worst-case end-to-end path latency (i.e. a worst-
case latency guarantee) from τ1r to τ1e , we take the path latency
from task τ1r to τCc , the maximum path latency over all forked
paths from τCc to τCs , and the path latency from τCs to τ1e .

Figure 3c shows how the predefined flow protocol from
Figure 2b can be modeled in CPA by using the same principle.
As expected, this model is less complex.

V. EVALUATION

In this section, we evaluate the general suitability of the
SDN network control concept for real-time Ethernet. As
SDN’s centralized network control introduces additional traf-
fic, we evaluate both the SDN configuration latency, to investi-
gate if the network can be configured in a timely manner, and
the impact of the additional SDN traffic on non-SDN traffic
(i.e. the traffic that is controlled by SDN), to quantify SDN’s
overhead on existing traffic. We explore, for both protocols,
different parameters: the number of SDN requests per switch,
SDN frame sizes, SDN processing times, and SDN traffic
priorities. Our analysis is based on the CPA models introduced
in Section IV-B. We use the worst-case latency guarantees
derived from CPA as a comparison metric.

100 Mbit/s
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Our evaluation is based on the quad star topology in
Figure 4. Eight ECUs are distributed throughout the network.
Highly loaded links are connected via 1GBit/s. All other
links are 100MBit/s links. The SDN controller is located near
the network’s center. Table I summarizes the normal (non-
SDN) traffic in the network, which has been provided by
Daimler AG. The traffic is categorized into control and camera
traffic. Control traffic is assumed to be latency-critical and
is mapped to a higher Ethernet priority than camera traffic,
which we assume to have more relaxed latency requirements.
There are different kinds of traffic streams in the network:
unicast, multicast (the notation n(d) specifies that there are n
multicast streams with d destinations), and broadcast. For each
traffic class, Table I gives its minimum, maximum, and average
payloads and periods. We assume that IPv4/UDP is used to
route data, so that an overhead of 28bytes must be added to the
payload. Although traffic is considered to be periodic, we use a
periodic with jitter event model [4] for traffic streams entering
the network. To allow, in the worst-case, an occasional burst
of two frames, we set the jitter to the period.

The SDN configuration latency depends on various param-
eters, which we explore in the following. Specifically, we
investigate: (a) The number of SDN requests per switch: In our
evaluation, each switch sends a certain number of independent
SDN requests to the controller. We assume that, in the worst-
case, these requests are generated and sent concurrently. Each
request is modeled by a periodic event model with a period
of 1s, e.g. for a periodic 5ms stream every 200th frame would
cause an SDN request. We also assume that each request
requires all switches in the network be updated with new
forwarding rules. (b) The size of SDN messages: OpenFlow,
for example, defines different message types (e.g. to send
requests to the controller or to reconfigure flow tables), which
can be of variable size (depending, e.g., on the number of
flow table entries to modify or the number of actions). Thus,
we also evaluate different SDN message types and sizes. We
assume that there are two different types of SDN messages.
In OpenFlow, the requesting frame (e.g. Frame 1 in Figure 2)
can be sent as part of the request message (PacketIn message
in OpenFlow) payload to the SDN controller to aid decision
making. This, however, leads to larger SDN overhead, as
larger frames potentially cause more/longer interference in the
network. In this evaluation, which is in the context of real-
time systems, we try to reduce the SDN overhead and assume
that request, acknowledge, and enable messages only carry
enough information to unambiguously identify a traffic stream,

TABLE I
TRAFFIC DESCRIPTION

Control Camera
Unicast 26 4

Multicast 13(2), 4(3), 1(4) 1(2)
Broadcast 6 0

Payload (bytes) [1, 250] [875, 1400]
Average (bytes) 54 1160

Period [5ms, 1s] [100us, 1ms]
Average 182ms 372us



e.g. MAC and/or IP addresses, VLAN IDs, port numbers, etc.
and not the entire requesting frame. We evaluate these small
SDN messages for sizes of 16 and 32bytes. SDN configuration
messages, in contrast, must provide enough room to carry
new switch configuration data, e.g. flow table entries (rules
to match traffic streams (including wildcards) and actions),
and are typically larger. We evaluate configuration messages
for sizes of 64, 128, and 256bytes (OpenFlow’s FlowMod
messages are in this range). Again, we assume IPv4/UDP
encapsulation, which introduces an additional overhead of
28bytes. (c) The execution time on SDN processing resources:
We assume that there are two different types of execution
times. At the SDN agent side the tasks to generate the request
(τ1r ), update the flow table (τ1c ), and enable forwarding (τ1e ),
as well as the synchronization task on the SDN controller (τCs )
are assumed to require less processing time than the task on
the SDN controller that decides whether a request is allowed
to enter the network or not (τCc ). We assume that the execution
times for the former tasks are in the range of [20us,30us] and
for the latter task in the range of [30us,50us]. As the execution
times highly depend on the implementation complexity and the
underlying processor architecture and speed, we additionally
evaluate the SDN configuration latency if these execution
time ranges are cut in half, i.e. [10us,15us] and [15us,25us],
respectively. (d) The priority of SDN traffic: In Ethernet, SDN
communication uses the same network infrastructure as non-
SDN traffic. Consequently, the Ethernet priority of SDN traffic
has a decisive impact on the SDN configuration latency, as it
determines how much interference it can experience. Likewise,
the impact of SDN traffic on non-SDN traffic also depends
on this priority. We investigate the impact of SDN’s Ethernet
priority by comparing setups where SDN traffic is mapped
to the highest Ethernet priority (higher than control traffic),
where SDN traffic shares a priority with control, and where it
shares a priority with camera traffic.

We use standard Ethernet (IEEE 802.1Q) to arbitrate frames
in the Ethernet network [13]. We also implemented the op-
timization proposed by [14], which considers Ethernet links
as (physical) traffic shapers. The scheduling on the CPUs of
the SDN agents and the controller is assumed to be static-
priority preemptive scheduling, where tasks of equal priority
are processed in their activation order. While the priorities of
these tasks can be used to prioritize requests, we set their
priorities to the Ethernet priorities of their SDN messages.

In Figures 5, 6, and 7, we present our evaluation results
as boxplots (even though this is not a random experiment).
Observe the different scale of the y-axes. Each box summa-
rizes the worst-case latency guarantees of all analyzed traffic
streams (i.e. SDN traffic streams in Figures 5 and 6, and non-
SDN traffic streams in Figure 7). The actual box covers 50%
of the latency guarantees. The lower and upper edges are the
25% and 75% quartiles and the antennas mark the worst-
case guarantees of the streams with the lowest and highest
latency guarantees. The median guarantees are marked by a
black line inside the box. The x-axis labels follow the scheme
X,N/M. X specifies whether full (F) or half (H) execution
times are used for SDN processing tasks. N∈{16,32} and
M∈{64,128,256} specify the frame size of SDN messages.
Due to space constraints, we focus on the explicit flow
configuration protocol and only highlight the differences to
the predefined flow protocol, which, in general, shows similar
behavior, but with significantly lower guaranteed latencies.
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Fig. 5. Worst-case SDN configuration latency guarantees for the explicit
flow configuration protocol with SDN traffic mapped to the highest priority
for (a) 1, (b) 2, (c) 4, and (d) 8 SDN requests per switch.
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(b)
Fig. 6. Worst-case SDN configuration latency guarantees for the explicit
flow configuration protocol with 8 SDN requests per switch. SDN traffic is
mapped to the same priority as (a) control and (b) camera traffic (cf Figure 5d).

Figure 5 shows the worst-case SDN configuration latency
guarantees for the explicit flow configuration protocol with
SDN traffic mapped to the highest Ethernet priority for an
increasing number of SDN requests per switch. As expected,
the SDN configuration latency guarantees grow as the number
of SDN requests per switch increases. However, in our setup,
even with 8 SDN requests per switch, i.e. many concurring
SDN requests, they always stay below 6.1ms. The impact of
the SDN message sizes on the SDN configuration latency
guarantees is visible, but relatively small. This is because
the SDN configuration latency does not solely depend on the
transmission times of SDN Ethernet messages, but also on the
amount of blocking by lower-priority Ethernet traffic. In the
worst-case, the largest lower-priority Ethernet frame can block
high-priority SDN traffic once (per busy period), due to the
non-preemptive link access in IEEE 802.1Q [13]. Also, in our
setup, the SDN processing requirements at the SDN controller
and the SDN agents are independent of the SDN message
size and contribute about 40% (half execution times) and
60% (full execution times) to the SDN configuration latency
guarantees. Reducing the execution times of SDN’s processing
requirements (F vs. H setups in Figure 5), e.g. by using faster
processors, can significantly lower the SDN configuration
latency guarantees, especially for an increased number of SDN
request per switch. The predefined flow protocol generally
shows similar behavior, but with lower worst-case latency
guarantees. For 1, 2, 4, and 8 SDN request streams per switch,
the configuration latency bounds are 0.6ms, 0.8ms, 1ms, and
1.3ms, respectively. It is independent of the conf message size.

From a safety perspective, transmitting all SDN traffic on
the highest priority might not be desirable, as, this way, lower-
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(c)
Fig. 7. Impact of SDN traffic with 8 SDN requests per switch in the explicit
flow configuration protocol on the worst-case latency guarantees of non-
SDN traffic. SDN traffic is mapped to (a) the highest Ethernet priority, (b)
the priority of control traffic, and (c) the priority of camera traffic.

priority non-SDN traffic could flood the network with high-
priority SDN requests. Mapping SDN traffic to the priority of
the requesting (non-SDN) traffic stream can mitigate this prob-
lem, but entails longer SDN configuration latencies. Figure 6
shows the impact of the SDN traffic priority on the worst-case
SDN configuration latency guarantees for the explicit flow
configuration protocol with 8 SDN requests per switch. Unsur-
prisingly, the lower the priority of SDN traffic, the higher the
worst-case SDN configuration latency guarantees. The increase
of the SDN configuration latency guarantee depends highly on
the non-SDN (camera and/or control) traffic. In Figure 6a SDN
traffic experiences same-priority interference from itself and
control traffic as well as (limited) lower-priority blocking from
camera traffic. In contrast, in Figure 6b it experiences same-
priority interference from itself and camera traffic, while also
experiencing control traffic as higher-priority interference. For
the explicit flow configuration protocol the worst-case SDN
configuration latency guarantees are 8ms and 13ms for SDN
traffic on control and camera priority, respectively. For the
predefined flow protocol, the bounds are 2.3ms and 2.8ms.

Figure 7 shows the impact of SDN traffic with 8 SDN
requests per switch in the explicit flow configuration protocol
on the worst-case latency guarantees of non-SDN traffic, i.e.
control and camera traffic, for different SDN traffic priorities.
We only show the setups with full execution times. The worst-
case end-to-end latency guarantees of camera and control
traffic in a network without interference from SDN traffic,
i.e. without SDN control, are summarized by the no-SDN
box. Compared to the no-SDN case, if SDN traffic is on the
highest priority, the worst-case end-to-end latency guarantees
of non-SDN traffic increase on average (average values are
marked with a black dot) by 1 to 1.5ms, while the peak
values increase by at most 3ms. In Figure 7a, the impact of
the different SDN conf message sizes, which are transmitted
on the highest priority, on the lower-priority traffic is clearly
visible. Mapping SDN traffic on the same priority as control
traffic significantly reduces the worst-case latency guarantees
of most non-SDN traffic streams (see Figure 7b). Recall that
most non-SDN traffic streams are control streams (see Table I),
which now benefit from the reduced priority of SDN traffic.
This is because the optimization proposed by [14] reduces the
overestimation of same-priority interference. The peak latency
guarantees, however, are not reduced. These guarantees are
from camera traffic, which, in this setup, still experiences
SDN traffic as higher-priority interference. Figure 7c shows
that camera traffic does benefit from mapping all SDN traffic to
its priority level, but the improvement is comparatively small.
This is because the period of camera traffic streams is close to

the transmission times of SDN traffic frames. The transmission
time of a single 256byte SDN conf message (about 26us)
is about a quarter of the shortest camera traffic period (see
Table I). Hence, the presence of multiple SDN traffic streams
(8 per switch in Figure 7) increases the camera traffic backlog
(i.e. the number of frames waiting for service at a switch port),
which causes large worst-case latency guarantees. Note that
the control traffic in Figure 7b is not affected by this backlog
build up, as control traffic periods are large compared to the
transmission times of SDN messages. In Figure 7c, control
traffic, which makes up most of the traffic streams, benefits
slightly, as can be concluded from the subtly lower median
worst-case latency guarantees (compared to Figure 7b). For the
predefined flow protocol, all worst-case latency guarantees of
control and camera traffic are upper bounded by 2ms, i.e. the
overhead of this protocol on non-SDN traffic is very small.

VI. CONCLUSION

Software defined networking (SDN) is an emerging topic
in real-time Ethernet and SDN concepts can be found in
the upcoming Ethernet TSN standards. SDN decouples a
network’s control and data planes and introduces centralized
network control to unify network configuration. In this paper,
we investigated the general suitability of SDN for real-time
Ethernet. We showed how SDN communication can be mod-
eled and analyzed in a compositional formal analysis frame-
work to derive worst-case bounds for network configuration
latencies. We used a typical automotive setup to evaluate
SDN’s scalability and its overhead on non-SDN traffic. Our
results show that worst-case network configuration latency
guarantees well below 50ms are possible, which allows to use
SDN for admission control and fault recovery in Ethernet.
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