Poster Open Access

How the stellar flicker noise affects the characterization of planetary transits ?

Sulis Sophia

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">exoplanet, stellar activity, characterization</subfield>
  <controlfield tag="005">20211006160333.0</controlfield>
  <controlfield tag="001">5552619</controlfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">141201</subfield>
    <subfield code="z">md5:d578e901269ce3eb2366fd16240dfd32</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-10-06</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-plato2021</subfield>
    <subfield code="o"></subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Laboratoire d'astrophysique de Marseille</subfield>
    <subfield code="0">(orcid)0000-0001-8783-526X</subfield>
    <subfield code="a">Sulis Sophia</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">How the stellar flicker noise affects the characterization of planetary transits ?</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-plato2021</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u"></subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Stellar activity is known to limit exoplanet detection and characterization. Among this activity, stellar convection (``flicker&amp;#39;&amp;#39;) evolves during the typical transit timescales (~ hours) and affects the inferred transit parameters.&lt;br&gt;
We generated realistic simulations of transiting exoplanets based on solar HMI data. These simulations include planets from 1 to 10 Earth radii with different transit geometries. These simulations comprising hundreds of light curves are available to the community :;br&gt;
We analyzed the data using standard MCMC methods assuming the noise is white and Gaussian (WGN), or a Gaussian Process (GP). We show that, in both cases, the resulting planet parameters can be affected by biases,&lt;br&gt;
which leads to biased planetary radius measurements. This demonstrates the need to develop robust stellar noise modeling to achieve PLATO&amp;#39;s goal of characterizing exoplanets transiting solar-like stars.&lt;br&gt;
Next steps of this study will be to investigate&lt;br&gt;
i) how other noise sources (e.g., flares, spots and faculae) affect the inferred exoplanet parameters,&lt;br&gt;
ii) which noise modeling allows to derive the most accurate transit parameters.&lt;/p&gt;</subfield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5552618</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5552619</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">poster</subfield>
All versions This version
Views 8181
Downloads 4646
Data volume 6.5 MB6.5 MB
Unique views 7777
Unique downloads 3939


Cite as