Poster Open Access
Jontof-Hutter, Daniel; Lissauer, Jack; Rowe, Jason
<?xml version='1.0' encoding='utf-8'?> <resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd"> <identifier identifierType="DOI">10.5281/zenodo.5551125</identifier> <creators> <creator> <creatorName>Jontof-Hutter, Daniel</creatorName> <givenName>Daniel</givenName> <familyName>Jontof-Hutter</familyName> <affiliation>University of the Pacific</affiliation> </creator> <creator> <creatorName>Lissauer, Jack</creatorName> <givenName>Jack</givenName> <familyName>Lissauer</familyName> <affiliation>NASA Ames Research Center</affiliation> </creator> <creator> <creatorName>Rowe, Jason</creatorName> <givenName>Jason</givenName> <familyName>Rowe</familyName> <affiliation>Bishop's University</affiliation> </creator> </creators> <titles> <title>Transit Timing in the Kepler Field with PLATO: The case for 24 cameras on the Kepler Field</title> </titles> <publisher>Zenodo</publisher> <publicationYear>2021</publicationYear> <dates> <date dateType="Issued">2021-10-05</date> </dates> <resourceType resourceTypeGeneral="Text">Poster</resourceType> <alternateIdentifiers> <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5551125</alternateIdentifier> </alternateIdentifiers> <relatedIdentifiers> <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5551124</relatedIdentifier> <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/plato2021</relatedIdentifier> </relatedIdentifiers> <rightsList> <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights> <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights> </rightsList> <descriptions> <description descriptionType="Abstract"><p>Since TTV signals increase with observational baseline,&nbsp;PLATO&#39;s stare at the<br> Kepler field will yield transit timing variations with a total baseline that<br> includes both missions, an important opportunity unique to the&nbsp;PLATO&nbsp;mission.<br> <br> We discuss the regimes in period and radius where Kepler and TESS provide<br> good samples for planet characterization, and highlight where&nbsp;PLATO&nbsp;could<br> maximize its impact; where Kepler planets are expected to have TTV signals<br> regardless of their prior detection, and where the TTV periodicity is<br> comparable to or exceeds the Kepler baseline.<br> <br> We argue that&nbsp;PLATO&#39;s impact in characterizing low-mass planets with transit<br> timing will be significantly enhanced by centering Long-duration Observation<br> Phases on the Kepler field to ensure that 24 cameras observe Kepler targets,<br> enabling similar transit timing precision to Kepler. Transit timing<br> uncertainty scales as ~1/SNR. Hence, having just 6 (or 12) cameras on the<br> Kepler field instead of 24 would increase transit timing uncertainties by ~2<br> (or sqrt(2)).<br> <br> Finally, we provide some examples of anticipated highlights from&nbsp;PLATO&nbsp;in<br> characterizing planets with transit timing.<br> &nbsp;</p></description> </descriptions> </resource>
All versions | This version | |
---|---|---|
Views | 85 | 85 |
Downloads | 48 | 48 |
Data volume | 176.9 MB | 176.9 MB |
Unique views | 81 | 81 |
Unique downloads | 42 | 42 |