Conference paper Open Access

Pairwise Ranking Network for Affect Recognition

Georgios Zoumpourlis; Ioannis Patras


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <controlfield tag="005">20211006014831.0</controlfield>
  <controlfield tag="001">5550449</controlfield>
  <datafield tag="711" ind1=" " ind2=" ">
    <subfield code="d">28 September - 1 October, 2021</subfield>
    <subfield code="g">ACII</subfield>
    <subfield code="a">9th International Conference on Affective Computing and Intelligent Interaction</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Queen Mary University of London</subfield>
    <subfield code="a">Ioannis Patras</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">314565</subfield>
    <subfield code="z">md5:585b8cb9abb9a5dd742a41a49e3ea33f</subfield>
    <subfield code="u">https://zenodo.org/record/5550449/files/Pairwise_Ranking_Network_for_Affect_Recognition.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="y">Conference website</subfield>
    <subfield code="u">https://www.acii-conf.net/2021/</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2021-06-26</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="p">user-ai4media</subfield>
    <subfield code="o">oai:zenodo.org:5550449</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Queen Mary University of London</subfield>
    <subfield code="a">Georgios Zoumpourlis</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Pairwise Ranking Network for Affect Recognition</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">user-ai4media</subfield>
  </datafield>
  <datafield tag="536" ind1=" " ind2=" ">
    <subfield code="c">951911</subfield>
    <subfield code="a">A European Excellence Centre for Media, Society and Democracy</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;In this work we study the problem of emotion recognition under the prism of preference learning. Affective datasets are typically annotated by assigning a single absolute label, i.e. a numerical value that describes the intensity of an emotional attribute, to each sample. Then, the majority of existing works on affect recognition employ sample-wise classification/regression methods to predict affective states, using those annotations. We take a different approach and use a deep network architecture that performs joint training on the tasks of classification/regression of samples and ordinal ranking between pairs of samples. By treating input samples in a pairwise manner, we leverage the auxiliary task of inferring the ordinal relation between their corresponding affective states. Incorporating the ranking objective allows capturing the inherently ordinal structure of emotions and learning the inter-sample relations, resulting in better generalization. Our method is incorporated into existing affect recognition architectures and evaluated on datasets of electroencephalograms (EEG) and images. We show that the approach proposed in this work leads to consistent performance gains when incorporated in classification/regression networks.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">doi</subfield>
    <subfield code="i">isVersionOf</subfield>
    <subfield code="a">10.5281/zenodo.5550448</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.5281/zenodo.5550449</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">conferencepaper</subfield>
  </datafield>
</record>
45
30
views
downloads
All versions This version
Views 4545
Downloads 3030
Data volume 9.4 MB9.4 MB
Unique views 3939
Unique downloads 2727

Share

Cite as