Journal article Open Access

Heterogeneous Networks in 5g using Joint Path Selection and Efficient Self-Organization Protocol

B.Pavithra; Komala James


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Self-Organizing Networks (SON), Efficient SelfOrganization Protocol (ESOP).</subfield>
  </datafield>
  <controlfield tag="005">20211005134833.0</controlfield>
  <controlfield tag="001">5549852</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Professor, Department of ECE, SRM Valliammai  Engineering College, Chennai, India.</subfield>
    <subfield code="a">Komala James</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">500185</subfield>
    <subfield code="z">md5:cd3e0fb6c13d94f08dc2129b55e0690e</subfield>
    <subfield code="u">https://zenodo.org/record/5549852/files/E1017069520.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-06-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5549852</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">1183-1186</subfield>
    <subfield code="n">5</subfield>
    <subfield code="p">International Journal of Engineering and Advanced Technology (IJEAT)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Department of Communication Systems from SRM  Valliammai Engineering College, Chennai, India.</subfield>
    <subfield code="a">B.Pavithra</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Heterogeneous Networks in 5g using Joint Path  Selection and Efficient Self-Organization Protocol</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2249-8958</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)E1017069520/2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Tree networks are systematically spread across multiple networks. This project proposes a framework for effective selforganization for 5 G heterogeneous networks. All nodes in this network are classified into two types: network nodes, and nonnetwork nodes. Network nodes are able to broadcast packets to neighboring nodes. A tree-based network can then be obtained from one layer to another. The topology is dynamically balanced to balance energy consumption and extend the service life of the network. To test the current technique we perform tests with it. Results from the simulation show our proposed protocol can easily create a stable tree-based network. As the network size rising, the time for self-organization, average hop and error ratio for packets does not change any more. In comparison, packet success rates in effective self-organization protocol are significantly higher compared to AODV and DSDV. Non-network nodes collect the packets being transmitted and decide whether to access the network. We use various metrics such as number of child nodes, hop, contact distance and residual energy to meet the available sink nodes weight during the self-organizing process, the node with highest weight is selected as sink node. Non-network nodes will be transformed to network nodes if they effectively join the network.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2249-8958</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijeat.E1017.069520</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
33
14
views
downloads
Views 33
Downloads 14
Data volume 7.0 MB
Unique views 33
Unique downloads 14

Share

Cite as