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Embeddings

● Capture meaningful information via intermediate 
representation for downstream
– Debates about what other properties are good

● have long history in language processing, 
information retrivial
– tf-idf, LSI/ SVD, latent dirlechet processes, etc.



  

● Have to choose what structures to capture
● Variety of granularities:

– Whole-graph embeddings
– Sub-graph embeddings
– Node embeddings 

Graph Embeddings

Focus of this talk



  

● Emphasis structural similarity or proximity
Graph Embeddings
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● Can have different distance 
decays
● Katz score, A^k



  

Graph Embedding Techniques
● LLE([11]), Laplacian Eigenmaps ([1])

– Proximity based, basically matrix factorization

● Autoencoder and convutional neural net 
approaches

● DeepWalk([10]), node2vec([6])
– Based on language models, Skip-Gram model ([9]), 

and rand. walk
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Graph Embedding Techniques
● Many techniques build on node2vec. Ex:

– Harp ([2])
● Heirarchy of refinement graphs, repeating embedding to avoid 

bad local minima

– Metapath2vec ([4])
● Bias random walk of node2vec based on edge and node 

attributes
● Users provide meta-templates to guide attribute-walks



  

Temporal Graph Embedding
● Increased attention within last four years
● Motivations from:

– Disease tracking
– IoT, autonomous network systems
– Casuality studies 



  

● Most based on stringing together global 
snapshots

Temporal Graph Embedding
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● Most based on stringing together global 
snapshots

Temporal Graph Embedding
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Requires global, 
discrete time-steps



  

Our Approach: WalkingTime
● Handles time differently:

– Local
– Continous
– Allows forward and backward traversal

● Builds off of node2vec and collection of time-respecting path 
methods ([7])
– Technically, handles a multi-graph
– Maintains set of active times for nodes, only walks to those with overlap



  

● Adds one new parameter compared to 
node2vec: 

● Put time intervals on edges  

WalkingTime: Pre-processing
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WalkingTime: Random Walk
Active Edges

● active edges for each node depends on edges 
used to reach node. Ex:

Key: solid line= “active” edge (can be traversed),  dashed line=”inactive” edge
yellow nodes = node currently on,      blue nodes = other nodes in the graph 
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● active edges for each node depends on edges 
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● node2vec: p and q parameters influences 
sampling in same neighborhood

WalkingTime: Random Walk
Biased Sampling à la node2vec
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● node2vec: p and q parameters influences 
sampling in same neighborhood

WalkingTime: Random Walk
Biased Sampling à la node2vec
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WalkingTime: Random Walk
Biased Sampling in Our Method
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Added efficiency: reinterprete parameters as 
rejection sampling probs.
1)Uniform rand. sample a “neighbor in static graph”

● i.e., edge connects nodes, regardless of if 
active

2)Find out if there is an active edge linking nodes 
● If not, got to (1)

3)Choose new node with prob. specified by 
parameters

If sample all nodes and not yet chosen new node: 
use cached results and alias sampling to do 
node2vec method



  

Experiments
● Datasets: 

– Synthetic: Conway’s 
Game of Life ([5])

● Famous celluar automata
● One node per grid-cell
● If two cells share a vertex 

and are active within one 
time-step: form edge 

t

t + 1



  

Experiments
● Datasets: 

– Synthetic: Conway’s 
Game of Life

“Glider”

{Large Grid











  

● On-going works:
– Latent Graph Reconstruction
– Link Prediction

● Finding datasets that clear and numerous 
cause-effect relations in lab sciences

Further Experiments
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