

WalkingTime: Dynamic Graph
Embedding Using Temporal-

Topological Flows

(*) Acknowledgements: Thanks to Dr. Reihaneh Rabbany for thoughts and suggestions

D Bayani, Carnegie Mellon University (*)
dcbayani@alumni.cmu.edu

Embeddings

● Capture meaningful information via intermediate
representation for downstream
– Debates about what other properties are good

● have long history in language processing,
information retrivial
– tf-idf, LSI/ SVD, latent dirlechet processes, etc.

● Have to choose what structures to capture
● Variety of granularities:

– Whole-graph embeddings
– Sub-graph embeddings
– Node embeddings

Graph Embeddings

Focus of this talk

● Emphasis structural similarity or proximity
Graph Embeddings

A

E

B

F

DC

OR

y

x

y

x

A
C

E
D

B

F

A
E

B
F

C
D

proximity

structural
● Can have different distance
decays
● Katz score, A^k

Graph Embedding Techniques
● LLE([11]), Laplacian Eigenmaps ([1])

– Proximity based, basically matrix factorization

● Autoencoder and convutional neural net
approaches

● DeepWalk([10]), node2vec([6])
– Based on language models, Skip-Gram model ([9]),

and rand. walk

Graph Embedding Techniques
● LLE, Laplacian Eigenmaps

– Proximity based, basically matrix factorization

● Autoencoder and convutional neural net
approaches

● DeepWalk, node2vec
– Based on language models, Skip-Gram model, and

rand. walk

Skim-Gram

Sample
from
document

“The boy ran fast to”{
Context window

informing
embedding of “ran”

DeepWalk

Random
Walk

n_1, n_2, n_3, n_4, n_5 {

Context window
informing

embedding of n_3

Graph Embedding Techniques
● Many techniques build on node2vec. Ex:

– Harp ([2])
● Heirarchy of refinement graphs, repeating embedding to avoid

bad local minima

– Metapath2vec ([4])
● Bias random walk of node2vec based on edge and node

attributes
● Users provide meta-templates to guide attribute-walks

Temporal Graph Embedding
● Increased attention within last four years
● Motivations from:

– Disease tracking
– IoT, autonomous network systems
– Casuality studies

● Most based on stringing together global
snapshots

Temporal Graph Embedding

A

E

B

F

DC

A

E

B

F

DC

t t +1
. . .

{
Cross time-step consistency loss

● Most based on stringing together global
snapshots

Temporal Graph Embedding

A

E

B

F

DC

A

E

B

F

DC

t t +1
. . .

{
Cross time-step consistency loss

Requires global,
discrete time-steps

Our Approach: WalkingTime
● Handles time differently:

– Local
– Continous
– Allows forward and backward traversal

● Builds off of node2vec and collection of time-respecting path
methods ([7])
– Technically, handles a multi-graph
– Maintains set of active times for nodes, only walks to those with overlap

● Adds one new parameter compared to
node2vec:

● Put time intervals on edges

WalkingTime: Pre-processing

A

B

Persistent Edges

C

D

“Time-point”:
Edge only exists at time t

E

F

Edge exists from

WalkingTime: Random Walk
Active Edges

● active edges for each node depends on edges
used to reach node. Ex:

Key: solid line= “active” edge (can be traversed), dashed line=”inactive” edge
yellow nodes = node currently on, blue nodes = other nodes in the graph

Next
Step

A

Start

B

E

C

(1,2.01)

(4.5,7.8) (3.2,4.51)

(2,3)

(2.5, 4)

A B

E

C

D

(1,2.01)

(4.5,7.8) (3.2,4.51)

(2,3)

(2.5, 4)

D

E

F

(4.5,7.8)

(2.5,6)

D

E

F

(4.5,7.8)

(2.5,6)

● active edges for each node depends on edges
used to reach node. Ex:

Next
Step

A

Start

B

E

C

D

(1,2.01)

(4.5,7.8) (3.2,4.51)

(2,3)

(2.5, 4)

A B

E

C

D

(1,2.01)

(4.5,7.8) (3.2,4.51)

(2,3)

(2.5, 4)

Key: solid line= “active” edge (can be traversed), dashed line=”inactive” edge
yellow nodes = node currently on, blue nodes = other nodes in the graph

D

E

F

(4.5,7.8)

(2.5,6)

D

E

F

(4.5,7.8)

(2.5,6)

WalkingTime: Random Walk
Active Edges

● active edges for each node depends on edges
used to reach node. Ex:

Next
Step

A B

E

C

D

(1,2.01)

(4.5,7.8) (3.2,4.51)

(2,3)

(2.5, 4)

Key: solid line= “active” edge (can be traversed), dashed line=”inactive” edge
yellow nodes = node currently on, blue nodes = other nodes in the graph

D

E

F

(4.5,7.8)

(2.5,6)

A B

E

C

D

(1,2.01)

(4.5,7.8) (3.2,4.51)

(2,3)

(2.5, 4)

D

E

F

(4.5,7.8)

(2.5,6)

WalkingTime: Random Walk
Active Edges

● active edges for each node depends on edges
used to reach node. Ex:

Next
Step

A B

E

C

D

(1,2.01)

(4.5,7.8) (3.2,4.51)

(2,3)

(2.5, 4)

Key: solid line= “active” edge (can be traversed), dashed line=”inactive” edge
yellow nodes = node currently on, blue nodes = other nodes in the graph

D

E

F

(4.5,7.8)

(2.5,6)

A B

E

C

D

(1,2.01)

(4.5,7.8) (3.2,4.51)

(2,3)

(2.5, 4)

D

E

F

(4.5,7.8)

(2.5,6)

WalkingTime: Random Walk
Active Edges

● node2vec: p and q parameters influences
sampling in same neighborhood

WalkingTime: Random Walk
Biased Sampling à la node2vec

BA

D

C

E

F

Key:
Yellow node=
Current node

Red node=
Node came from

Last time step

● node2vec: p and q parameters influences
sampling in same neighborhood

WalkingTime: Random Walk
Biased Sampling à la node2vec

BA

D

C

E

F

Probability
Selected next:

Probability
Selected next:

Probability
Selected next:

As used in
node2vec

WalkingTime: Random Walk
Biased Sampling in Our Method

BA

D

C

E

F

Added efficiency: reinterprete parameters as
rejection sampling probs.
1)Uniform rand. sample a “neighbor in static graph”

● i.e., edge connects nodes, regardless of if
active

2)Find out if there is an active edge linking nodes
● If not, got to (1)

3)Choose new node with prob. specified by
parameters

If sample all nodes and not yet chosen new node:
use cached results and alias sampling to do
node2vec method

Experiments
● Datasets:

– Synthetic: Conway’s
Game of Life ([5])

● Famous celluar automata
● One node per grid-cell
● If two cells share a vertex

and are active within one
time-step: form edge

t

t + 1

Experiments
● Datasets:

– Synthetic: Conway’s
Game of Life

“Glider”

{Large Grid

● On-going works:
– Latent Graph Reconstruction
– Link Prediction

● Finding datasets that clear and numerous
cause-effect relations in lab sciences

Further Experiments

References

