WalkingTime: Dynamic Graph Embedding Using Temporal-Topological Flows

D Bayani, Carnegie Mellon University (*) dcbayani@alumni.cmu.edu

Embeddings

- Capture meaningful information via intermediate representation for downstream
 - Debates about what other properties are good
- have long history in language processing, information retrivial
 - tf-idf, LSI/ SVD, latent dirlechet processes, etc.

Graph Embeddings

- Have to choose what structures to capture
- Variety of granularities:
 - Whole-graph embeddings
 - Sub-graph embeddings
 - Node embeddings

Focus of this talk

Graph Embeddings

Emphasis structural similarity or proximity

Graph Embedding Techniques

- LLE([11]), Laplacian Eigenmaps ([1])
 - Proximity based, basically matrix factorization
- Autoencoder and convutional neural net approaches
- DeepWalk([10]), node2vec([6])
 - Based on language models, Skip-Gram model ([9]), and rand, walk

"The boy ran fast to"

n_1, n_2, <mark>n_3</mark>, n_4, n_5

Graph Embedding Techniques

- Many techniques build on node2vec. Ex:
 - Harp ([2])
 - Heirarchy of refinement graphs, repeating embedding to avoid bad local minima
 - Metapath2vec ([4])
 - Bias random walk of node2vec based on edge and node attributes
 - Users provide meta-templates to guide attribute-walks

Temporal Graph Embedding

- Increased attention within last four years
- Motivations from:
 - Disease tracking
 - IoT, autonomous network systems
 - Casuality studies

Temporal Graph Embedding

Most based on stringing together global snapshots

Temporal Graph Embedding

Most based on stringing together global snapshots

Requires global, discrete time-steps $L_{Prox.}(t+1)$

 $L_{Time}(t,t+1)$ Cross time-step consistency loss

Our Approach: WalkingTime

- Handles time differently:
 - Local
 - Continous
 - Allows forward and backward traversal
- Builds off of node2vec and collection of time-respecting path methods ([7])
 - Technically, handles a multi-graph
 - Maintains set of active times for nodes, only walks to those with overlap

WalkingTime: Pre-processing

- Adds one new parameter compared to node2vec: λ
- Put time intervals on edges

 active edges for each node depends on edges used to reach node. Ex:

 active edges for each node depends on edges used to reach node. Ex:

 active edges for each node depends on edges used to reach node. Ex:

 active edges for each node depends on edges used to reach node. Ex:

WalkingTime: Random Walk Biased Sampling à la node2vec

 node2vec: p and q parameters influences sampling in same neighborhood

Red node=
Node came from
Last time step

WalkingTime: Random Walk Biased Sampling à la node2vec

 node2vec: p and q parameters influences sampling in same neighborhood

WalkingTime: Random Walk Biased Sampling in Our Method

Added efficiency: reinterprete parameters as rejection sampling probs.

1)Uniform rand. sample a "neighbor in static graph"

• i.e., edge connects nodes, regardless of if active

2) Find out if there is an active edge linking nodes

• If not, got to (1)

3)Choose new node with prob. specified by parameters

If sample all nodes and not yet chosen new node: use cached results and alias sampling to do node2vec method

Experiments

- Datasets:
 - Synthetic: Conway'sGame of Life ([5])
 - Famous celluar automata
 - One node per grid-cell
 - If two cells share a vertex and are active within one time-step: form edge

Experiments

Large Grid

Synthetic: Conway's
 Game of Life

Experiments

- Baseline Algos.:
 - Static graph factorization
 - node2vec
 - TNE ([14])
 - DynamicTriad ([13])

- Evaluation Methods:
 - Node classification
 - 2D Visualization

Further Experiments

 Also trying on DBLP ([8,12]) and Higgs-Twitter ([8,3])

Further Experiments

- On-going works:
 - Latent Graph Reconstruction
 - Link Prediction
- Finding datasets that clear and numerous cause-effect relations in lab sciences

References

- [1] Mikhail Belkin and Partha Niyogi. 2002. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In *Advances in Neural Information Processing Systems 14*, T. G. Dietterich, S. Becker, and Z. Ghahramani (Eds.). MIT Press, 585–591. http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
- [2] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2017. HARP: hierarchical representation learning for networks. arXiv preprint arXiv:1706.07845 (2017).
- [3] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. 2013. The anatomy of a scientific rumor. Scientific reports 3 (2013), 2980.
- [4] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec: Scalable representation learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 135–144.
- [5] M. Gardner. 1970. Mathematical Games. Scientific American 223 (Oct. 1970), 120–123. https://doi.org/10.1038/scientificamerican1070-120
- [6] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for Networks. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*.
- [7] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics reports 519, 3 (2012), 97–125.
- [8] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data. (June 2014).
- [9] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013).
- [10] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learning of Social Representations. In *Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '14)*. ACM, New York, NY, USA, 701–710. https://doi.org/10.1145/2623330.2623732
- [11] Sam T. Roweis and Lawrence K. Saul. 2000. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 5500 (2000), 2323–2326. https://doi.org/10.1126/science.290.5500.2323 arXiv:http://science.sciencemag.org/content/290/5500/2323.full.pdf
- [12] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network Communities based on Ground-truth. (2012). arXiv:cs.SI/1205.6233
- [13] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang. 2018. Dynamic Network Embedding by Modelling Triadic Closure Process. In AAAI.
- [14] L. Zhu, D. Guo, J. Yin, G. V. Steeg, and A. Galstyan. 2016. Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks. IEEE Transactions on Knowledge and Data Engineering 28, 10 (Oct 2016), 2765–2777. https://doi.org/10.1109/TKDE.2016.2591009