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4.4 Forward Solution and Model Parametrization

The importance of the forward solution calculation for seismic tomography has already been em-
phasized at the beginning of this chapter (p. 70ff). Unfortunately it is up to now not possible to
use full 3D wave-theory in seismic tomography. Computation of theoretical travel times is there-
fore restricted to ray theory, the high-frequency approximation of the elastodynamic equation of
motion. One should be aware that in inhomogeneous media the high-frequency approximation
is only valid if the velocity gradient is small comapred to the frequency of the seismic wave. Al-
so, the use of infinitesimally thin rays too precisely constrains the location in 3D space from
where the information (thAT) comes, whereas in reality (wave theory) the information is al-
ways influenced by a finite volume, the Fresnel volume of the ray.

The amplitude of velocity heterogeneities and their spatial extent which can be resolved
with 3D tomography therefore depends on the accuracy of the ray theoretical forward solution
(ray tracing) in estimating the correct travel time and path in a given velocity model. The abso-
lute accuracy of a ray tracing scheme, however, is very difficult to assess. One way to determine
the influence of ray tracing on tomographic images is to use different forward solving schemes
and to compare the results.

The combination of approximate raytracing and pseudo-bending in the current version of the
SIMuLpPs-code (further referred to as ART_PB ray tracing) is proven to work well in most LET ap-
plications, but is suspected to yield inaccurate results for ray paths exceeding ~40 km length (e.g.
Eberhart-Phillips, 1986). Also the ART_PB is still an approximate raytracer, which only allows
limited deformation of the initially circular ray paths. The dimension of the lonia95 network is
about 150 kmx 150 km, and based on the results of Section 4.2, velocity variations Hp5%h
are to be expected. To assess the effects of possible inaccuracy of the ART_PB ray tracing for such
a problem, a highly accurate 3D shooting ray tracer, based on Virieux (1991), is implemented in
the SMULPS code.

Implementation of an Accurate 3D Raytracer in $MULPS
A Short Review of Ray Tracing

As stated above, all ray tracing schemes employ the high-frequency approach to solve the elas-
todynamic wave equation. An exhaustive discussion can for example be found in Aki & Rich-
ards (1980), here only some basic equations shall be given.

The scalar equation of wave propagation in an isotropic heterogeneous medium can be writ-
ten as
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where®(x,t) is a scalar wave field andx) the three-dimensional velocity field. For high fre-
guencies a harmonic solution of (4-1) can be given as

d(x,t) = A(x)exp[in(t-T(x))] , (4-2)

where AK) is the amplitude and kj the travel time at a point. This is a high frequency solu-
tion because only then the amplitude and travel time function will be frequency independent. In-
troducing (4-2) in (4-1) the travel time is described by the Eikonal equation
72T(x) =\ = %
v

(4-3)

whereu is the slowness (reciprocal velocityl(x) = constthen describes the wave fronts, and
the normals to the wave front, which define the direction of wave propagation, constitute the
seismic rays. By introducing a parametrizatior x(s), wheres s the arc length along the ray,
one can derive the ray equation
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The ray equation can numerically either be solved as initial value problem, where the ray
direction at a starting point is given (shooting), or as boundary value, where the ray starting point
and end point are given (bending). In both cases the solution of (4-4) will yield a ray path, and
integrating over this path will give the travel time for this ray.

Description of Ray Tracing by Hamiltonian Perturbation

The raytracing scheme implemented here is a shooting method, where the ray which connects
station and receiver in the given velocity distribution is found by varying the initial aziuth
and take-off angl® at the source. For the variation of the initial angles first order perturbation
therory is used. The general theory is described in Virieux et al. (1988), Virieux (1991) and Vir-
ieux & Farra (1991). In the following, a brief summary of the concept and the fundamental equa-
tions is given.

Introducing the slowness vectgr = OT  the eikonal equation (4-3) can be cast into a Ham-
iltonian formalism as proposed by Burridge (1976):

H(x P 1) = 519°—U(x)] (4-5)

X(1) is the position along the ray andis a sampling parameter along the ray, defined by

dT = pdx = u2dt. The eikonal equation implies th&t=0 along a ray, and the ray tracing
equations are then given by Hamiltons canonical equations
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whereld, and] b denote the gradients with respect to veatarglp, respectively. System (4-

6) has then to be solved faft), p(t) with the given initial values (shooting angles) to find the
raypath and, by integrating ove(t), the traveltime. Shooting normally implies that the initial
values (first guess) have to be adjusted so that the ray surfacing point reaches the station with a
required accuracy. For these adjustments the concept of paraxial rays proves to be very useful.
An already traced ray, described ky(t) andp.(t), will be called the central ray. Position and

slowness of the paraxial ray are then given by
X(1) = x(1) +0x(1) p(T) = pc(T) +0p(T; (4-7)

wheredx anddp are the perturbations of position and slowness of the central ray. These pertur-
bations have to satisfy the paraxial ray tracing equations, deduced by first order linear perturba-
tion of (4-6):
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whereH and its derivatives are computed on the central ray. In order that a solution of (4-8) rep-
resents a paraxial ray, the additional constraindléf= 0 must be fulfilled. Two paraxial rays,

both withdx(0) = 0, one withdp(0) associated with a changed¢nand one withdp(0) associated

with a change irB, are necessary to update the shooting angles. From the conditions of these
paraxials at the surface and the distance of the surfacing point of the central ray to the station,
variations in@ and¢ can be estimated; with a few iterations of this process convergence on the
station is normally reached.

The solution of the ray tracing equations (4-6) and (4-8) require the integration of a set of
differential equations. A fourth order Runge-Kutta solver is used in the numerical integration.
This requires the first order derivatives of the sgared slowness distribution to be continuous and
a certain smoothness of the second order derivatives to ensure numerical stability, which is ob-
tained by representing the squared slowness distribution with cardinal B-splines of order four.
The B-spline representation also allows very efficient programming of the calculation of the de-
rivatives, which drastically speeds up computation time. In the following this ray tracing scheme
will be abbreviated RKP-ray tracin@@ngeKutta +Perturbation).

Considerations on Model Parametrization

An important prerequisite to allow the comparison of different ray tracers is to ensure that the
physical model (the given 3D velocity structure) is similar within the significance level for each



of the ray tracers. This may sound rather trivial, but if one realizes that more or less every ray
tracer requires a different way of parametrization of the 3D velocity field it becomes evident that
this matter has to be treated carefully.

ART_PB ray tracing uses a model where velocities are defined on nodes (intersections of
grid lines) on a grid which may be irregularly spaced in each direction. For any arbitrary point
x the velocityv(x) is then obtained by 3D linear interpolation on the eight nearest neighbors (the
cube of grid-nodes enclosing. For the RKP-raytracing the model has to be parametrized as

squared slowness, and cubic B-spline interpolation (see Box) is used to obttﬁ(w) for any

pointx. For computational efficiency, the? -grid has to be equidistantly spaced in each direc-
tion. Also, cubic B-spline interpolation uses the four next neighbors in each direction for the
computation of an interpolated value. As can be seen from Figure 4.1b, the B-spline interpolated
curve is much smoother than the lineraly interpolated curve. If the two curves are taken to rep-
resent velocity-depth functions it is clear that one cannot expect that rays with the same start-
and endpoint would have similar paths and traveltimes in the different velocity representations.

In order to use the RKP ray tracing with the same velocity model as the ART_PB ray tracing
two problems have to be solved: 1) Values for squared slowness on an evenly spaced grid must
be obtained from an unevenly spaced velocity grid. 2) B-spline interpolation must be modified
in a way that remaining differences between linearly interpolated velocities and B-spline inter-
polated squared slownesses do not significantly affect the resulting rays. Note that this need only
arises because the main aim of this study is a comparison of the effect of the two ray tracers. In
principle there is no geophysical reason to prefer a linearly interpolated model to a B-spline in-
terpolated one.



Box : Cubic B-spline Interpolation

The principles of cubic B-spline interpolation can be explained on the 1D cas
extensions to 3D is then straightforward. A thorough discussion can be found
Boor (1987).

Given a discrete set of points;(v(x)), with the coordinate& and the value/(x),

sorted in ascending order, theear interpolation to obtaiw(x) at any pointx, with
Xj . 1 < X < X; can be written as

V%) = S L(xQDH(x)  1i(x) = L
i—Z,iJ “ : ok Xi_1—X

For every point thel; then is a triangular function which is 1 gtand 0 atx;_4,

Xi+1- Thel; are called basis functions and as the interpolated wabyedepends only

on the two next neighbors, this interpolation is also called linear B-spline of ord
A linearly interpolated curve normally has discontinuity in its first derivatives
each pointx.. To obtain interpolated curves which are continuous to the secon

rivative, cubic B-spline interpolation of order 4 is used. The interpolated val
now controlled by the four next neighbaxs,, Xi.1, X, Xi+1, and the basis function

are cubic polinomials. If the four control values are numbered from -2 to 1 (seq
4.1) the interpolation function then is

1
v(x) = 3 1i(%) TU(x,) -

i=-2

For equidistant spacingx of thex; the basis functions take the form
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Figure 4.1 shows the principle of cubic B-spline interpolation and a set of p
with the interpolated curve.
The extension to three dimensions is sketched in Figure 4.2.
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e Figure 4.1  Principle of
cubic B-spline interpolation.
a) From four points
(Xp-2,1pV(X[.2,1)) the value
v(xy) at x, is interpolated.

b) A B-spline curve (solid
black line) inter-polated from
a set of points (solid circles).
The dotted line depicts the
linear interpolation.

1 2 3

e

X-y plane of point

Figure 4.2  Scheme for 3D cubic B-spline interpolation. The solid black circles are the
control values (grid nodes) and the grey circle is the target point. 1) Interpolation along z onto
x-y plane of point. 2) interpolation along y onto x-coordinate of point. 3) Interpolation along x
onto point.




Implementation

Basis of the implementation of the RKP-ray tracer im@&.Ps is a code by J. Virieux (pers.
comm., 1998), which has been successfully used in two LET studies, in the Gulf of Corinth,
Greece (Le Meur et al., 1997) and in the northern Tien Shan, central Asia (Ghose et al., 1998).

In this code the initial velocity model is transformed into squared slowa@sshich is also the

model parameter used for the inversion. Some additional preparatory work and a couple of

changes to the RKP-code are necessary to use the RKP ray tracimgupsS

» The possibility of an unevenly spaced inversion grid is retained. Therefore the velocity field for
ray tracing has to be resampled on an even grid which will be called ray tracing grid (RT-grid).

» The RT-grid will be made up of velocities. For every point along a ray the velo€ity,z)will

be obtained by cubic B-spline interpolation. From thihe squared slowness valugsand
their first and second order derivatives are then given by

(4-9)
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This requires additional 24 multiplications, 3 divisons and 6 subtractions to compute the full

system ofu® and its first and second order derivatives for each raypoint, which is about 1/10 of
the number of operations needed for the B-spline interpolation.

» For the evenly spaced RT-grid a much smaller grid-spacing is used than in the original velocity
grid and linear 3D interpolation is used to derive the RT-grid from the inversion grid. This will
provide nearly identical velocity fields for the two ray tracing approaches (Fig. 4.3). At the
same time the velocity field for the RKP ray tracer can be rougher than in the original imple-
mentation.

» The initial shooting angles will be computed with the ART_PB raytracing. Initial values close
to the ‘true’ values are crucial for the success of the Hamiltonian perturbation. The regional
search algorithm of the ART and the refinement of the pseudo-bending have shown to yield
much better results than the previously used simple 1D-shooting. Initial angles have to be com-
puted on the first iteration and every time when (due to the change in velocities or hypocentral
coordinates) the Hamiltonian perturbation starting from previously stored angles fails to reach
the station.

Testing on Synthetic Models

RKP ray tracing has already been thoroughly tested by Virieux and co-workers (Virieux, 1991,

Le Meur et al., 1997, Ghose et al., 1998), but some things have substantially changed in this im-
plementation, e.g. the representation of the velocity field and the initial search for take off an-
gles. Some tests are therefore conducted to assess the performance of the ray tracer in the new



Figure 4.3  Refined B-spline interpolation. Solid black circles are the original unevenly spaced input
points, empty circles (and the solid circles) are the evenly distributed points resulting from linear
interpolation. The solid black line is the B-spline interpolated curve from the empty circles, the dotted
line is the linearly interpolated curve from the solid circles. The zoom-in shows the slight difference at
a location where the gradient is changing. In terms of model grids for tomography x may correspond
to depth [km] and y to velocity [km/s]. The dotted line then resembles the velocities used in ART_PB
ray tracing and the solid line those used in RKP ray tracing.

implementation.

The numerical stability of the computation can be tested by comparison of forward and re-
verse ray tracing, where source and receiver positions are exchanged. In Appendix C.1 these
tests are described in detail. It is shown that the numerical accuracy of the ray tracing in this im-
plementation is around 10 ms. This is of the same order of magnitude or better than the assumed
onset time accuracy for high quality local earthquake data (see Chapter 2).

In a second test, ART_PB ray tracing and RKP ray tracing are compared. For a homogene-
ous half-space no differences in travel times or ray path geometries are visible. For a velocity
gradient model with low- and high-velocity anomalies, significant differences in ray path and
travel time occur for rays exceeding 60 km length (Appendix C.2). From comparing forward and
reverse ray tracing it can be inferred that the difference is caused mainly by inaccuracies of the
ART_PB ray tracing. This confirms previous findings (e.g. Thurber, 1983, Eberhart-Phillips,
1986) that ART_PB ray tracing should be regarded with caution for rays longer than ~60 km.

In Figure 4.4 the results of the tests are summarized. For ray lengths up to ~50 km the travel
time differences between ART_PB and RKP ray tracing are within the numerical accuracy of
about 10 ms. For longer ray paths ART_PB yields systematically slower rays with large differ-
ences between forward and reverse ray tracing. This might probably be due to the hard-wired



maximum number of ray-segments in ART_PB ray tracing which effects longer ray paths more
than shorter ones. But no further testing of the ART_PB ray tracing has been undertaken in this
work. RKP rays also show an increased travel-time uncertainty above 60 km ray length but much
less than ART_PB rays.
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Figure 4.4  a) Travel time differences between forward (fwd) and reverse (bwd) ray tracing for RKP
fwd-bwd (triangles) and ART_PB fwd-bwd (squares). For both ray tracers an accuracy of ~10 ms is
inferred for ray lengths up to 60 km. For longer rays the RKP shows better performance than ART_PB.
b) Differences between ART_PB and RKP forward (circles) and reverse (triangles) ray tracing. Up to
~50 km ray length the differences are insignificant (within the ray tracing accuracy). For longer rays
RKP ray tracing gives faster travel times.

Computational Cost

With the advent of more and more powerful computers, the importance of the computational cost
of solving the forward problem is decreasing. Complementary to that the growth of data sets
used for tomographic studies again takes computational power to its limits. As a comparative
measure, RKP ray tracing for one ray takes about four times as long as ART_PB ray tracing if



no initial shooting angles are provided (i.e. at the first time a ray has to be traced) and about 2
times as long when initial angles are available from previous successful ray tracings. Main rea-
sons for the increase in computation time is the B-spline interpolation on the velocity field for
every ray point, and the increased number of ray points for RKP rays ( the maximum number of
ray points is fixed for ART_PB ray tracing). As the code was written to allow maximum control
on the performance of the ray tracer there may be some room for speeding up calculations.



Appendix C

RKP Ray Tracer Testing

C.1 Numerical Stability of RKP Ray Tracing

Travel times for shooting or bending forward raytracers are computed by summing up the travel
times for all ray segments (aray segment is defined as thespatfiveen 2 consecutive raypoints
r, ry). For RKP ray tracing the travel time for one ray segmeéhtis computed by

Tsinr = amprOw , whereampris the parameter that controls the step length for ray tracing

(dx = amprCp). ampris a value around 1, and’ has significant digits to 16, so summing up
Tsfor a large number of ray segments may lead to numerical instabilities. To test this a series of

tests are performed using 3 different methods of compiiting
timel is computed using the slowness value at the midpoint of the current ray segment :

timel = ZamprDuz(midpointS)
time2 is computed using Simpson’s extended rule :
time2 = ZTS(Simpsoh(r,rl)
time3 is computed using the trapezoidal rule:
time3 = Zampr[( r + uzrl)/z

Simpson’s extended rule integration (Press et al., 1986: Numerical Recipies, pp 105ff) uses
the parametgmaxto increase the number of points betweemdr, and so to get a more accu-

rate estimate follgthan with trapezoidal integration, especially when there are strong velocity

gradients along a path. Fgnax=1, time2andtime3are equal. With decreasirgmpr and in-
creasingimax the accuracy of the raypath and the traveltime should increase, but at the same
time the computational cost increases. The effects on the raypath can be neglected (raypaths are
similar within a few tens of meters) wittimprsmaller than 2. Thus we look for the largestpr
and smallegmaxwhich yield stable travel time estimations and compare this time to the results
with timelandtime3 as these are computationally more efficient they are preferable if the ob-
tained travel time is accurate enough.

The tests consisted of shooting between three station-event pairs in both dirdctioasd
from the event to the station ameversefrom the station to the event. As the effectashpris



much greater than gimax the results are presented in three tablesafoprvalues of 0.5, 1.0

and 1.5. The velocity field used for the tests has a vertical gradient of 0.2 km/s from the surface
to 17 km, 0.1 km/s from 17 to 27 km and then again 0.2 km/s. It contains one low- and one high-
velocity block with+15% anomaly respectively, which only influence the S3/E3 rays.

The raypaths for forward and reverse shooting are similar to within a few tens of meters for
all three station-event pairs, so the differences in travel times between the two rays are due to
numerical effects of the travel time estimation, and can be regarded as the limit of accuracy
which can be achieved.

From the results (Tables C.1 - C.3) it can be seen that for the computationef a value
of jmax=5 is sufficient to ensure stable travel times in all cases. Also, as expected, with decreas-
ing values ofamprthe differences betwedimel, time2andtime3decrease. The differences in
travel times for reciprocal shots decrease significantly for S2/E2 and S3/E3 betnwgenl.5
andampr=1.0, they increase slightly for S1/E1, but they are always greater than the differences
between the individuatimel, time2 time3values. From the point of stability of computed
traveltimes this results justify that a valaenpr= 1.0 is sufficient for stable travel time calcula-
tionin LET problems. This leads to an average ray segment length of ~200m, which makes sense
for velocity parametrizations on grids with 1km or larger grid spacing. For very small and de-
tailed modelsampr should probably be reduced. The computation of traveltimes using simple
trapezoidal rule integrationine3 is computational the most efficient one and does not produce
any significant different results to the other methodsdorpr= 1.0 or 0.5.time3is therefore
used in the RKP implementation imBLPS.

The travel times shown in the tables are those computed for the actual raypath obtained from
shooting. As shooting lacks a boundary condition at the endpoint of the ray (i.e. the ray will nor-
mally not hit the receiver exactly), the endpoints of the reciprocal rays are not equal. The maxi-
mum endpoint misfit in the tests is ~30 m, and the average is ~20 m. With the paraxial theory a
travel-time correction can be computed to account for these misfits. The correction is within a
few milliseconds and the values for the uncorrected and corrected timesnjor=1.0 (times
computed atime3 are given in Table C.4. The correction values are within the error levels con-
cluded previously, so one could argue whether a correction really is necessary. But the differ-
ences between the reciprocal travel times generally decrease when the correction is applied, and
this indicates that the correction does makes sense and should be taken into account.

From these tests it can be concluded that the absolute accuracy of travel times computed for RKP
ray tracing is around 10 ms. This is of the same order of magnitude as the arrival time picking
accuracy assumed for high frequency local earthquake data with good S/N ratio. But, consider-
ing the various error sources in arrival time estimation and the resulting cumulative uncertainty,
which normally is between 20 ms and 100 ms, travel times from ray tracing with 10 ms uncer-
tainty are sufficient for almost all LET applications.



endpoint| ray timel time2 time3
- starting| length
point [km] jmax=1| jmax=5| jmax=1p jmax= 20
S1-El 15.202 3.9868 3.9887 3.98§75 39875 3.987/5 3.9887
E1-S1 15.202 3.9893 3.9914 3.9900 3.9p00 3.9900 3.9914
S2-E2 43.097 8.7011  8.70p0  8.7077  8.7077 8.1077  8.,7090
E2-S2 43.080 8.6938 8.69b6 8.6944 8.6P44  8.6944  8.6956
S3-E3 79.835 14,7235 14.7254 14.7241 14.7241 14.7241 147254
E3-S3 79.859 14.70831 14.70|69 14.7057 14.7057 14.7/057 14.7069
Table C.1: ampr = 1.5
endpoint|  ray timel time2 time3
- starting| length
point [km] jmax= 1| jmax=5| jmax=10 jmax= 20
S1-El 15.202 3.9823 3.9881 3.9826 3.9826 3.9826 3/9831
E1-S1 15.202 3.9882 3.98p1 39885 3.9885 3.9885 39891
S2-E2 | 43.097 8.6985 8.6993 8.6987 8.6P87  8.6987  8.6993
E2-S2 43.080 8.6983 8.6991 8.6986 8.6P86  8.6986  8.6991
S3-E3 79.835 147023 14.70831 14.7025 14.4025 14./025 14.7031
E3-S3 79.859 147121 14.7129 14.7123 14.4123 14.7123 14.7129
Table C.2: ampr = 1.0
endpoint| ray timel time2 time3
- starting| length
point [km] jmax= 1| jmax=5| jmax=10 jmax= 20
S1-El 15.202 3.9876  3.98(8 3.98§77 3.9877 3.9877 3[9878
E1-S1 15.202 3.9912 3.9915 3.9913 3.9913 3.9913  3{9915
S2-E2 | 43.097 8.6984 8.6986 8.6985 8.6P85 8.6985  8.6986
E2-S2 43.080 8.7016 8.7048 8.7016 8.7016 8.7016  8//018
S3-E3 79.835 14.7097 14.7009 14.7097 14.7097 147097 14.7099




endpoint| ray timel time2 time3
- starting| length
point [km] jmax=1| jmax=5| jmax=1p jmax= 20
E3-S3 79.859 14.7144 147177 147175 14.7175 147175 14.7177
Table C.3: ampr=0.5
eggpr)grl]rg time3 [s] time3 [s] difference between shooting directions
point corrected | uncorrected corrected [ms] uncorrected [ms]
S1-El 3.9839 3.983
-4.4 -6.0
E1l-S1 3.9883 3.989
S2-E2 8.6962 8.699
-0.6 0.2
E2-S2 8.6968 8.699
S3-E3 14.7074 14.703'1
-6.1 -9.8
E3-S3 14.7137 14.712P

Table C.4: Travel times with and without end-point correction

C.2

Comparing ART_PB and RKP Ray Tracing

After testing the numerical stability of the RKP ray tracing a second test is undertaken to assess
the differences between ART_PB and RKP ray tracing. The synthetic velocity model and shot -
receiver configuration (slightly different from that used in C.1) for this test are shown in Figure
C.1. For each shot - receiver pair again forward and reverse ray tracing is done using ART_PB

and RKP. Thus the numerical accuracy of one ray tracing scheme as well as the differences be-
tween the two can be investigated. The ray tracing results are summarized in Table C.5. For ray
length less than ~60 km the travel times from both ray tracers, comparing forward and reverse
ray tracing, can be assigned uncertainties below 10 ms (see also Fig. 4.6a). The differences be-
tween the two ray tracing schemes become larger than 10 ms for ray lengths >50 km (Fig. 4.6b).
From the ray-path plots (Figs. C.2, C.3) it can be seen that for these rays also discernible differ-
ences in the ray paths exist. Apparently the RKP ray tracing can better adapt especially to the
presence of low velocity zones. Still the differences are rather small and especially for tomo-
graphic inversions with grid node spacing larger than about 5 km no significant effects due to
different ray paths should emerge. One drawback of the RKP ray tracing also becomes visible:
as itis a shooting method it can happen that no valid ray (i.e. a ray which reaches its target within
a certain maximal distance) can be found within the allowed number of iterations. This happens



here for the rays (E002 - S003) and (E002 - S005). Both these rays (calculated from the receiver
to the source) touch the border of the low velocity anomaly shortly before reaching the shot lo-
cation, and the adjustment process of the initial angles is not able to accomodate for this.

ART-PB times [s] RKP times [s] diff ART-PB
ray RKP [ms]
rec-shot
air length
P [km] diff diff | forw
forward | reverse forward | reverse revrs
[ms] [ms] d

S001-E001 39.42 7.678 7.6715 1 7.6189 7.6803 1.4 03 |28

o)

S002-E001 30.41 6.416b 6.4167 - 6.4158  6.4(87 29 07 |20

S003-E001 48.02 9.143  9.1440 - ( 9.1327  9.1B86 59 10.5 6.4

S004-E001 15.22 3.541p  3.5402 @ 3.5411 3.5424 1.3 01 |22

S005-E001 34.57 71110 7.1111 @ 7.1088  7.1140 5.2 33 29

S006-E001 36.14 7.7072  7.7037 3 7.7023  7.7p15 0.8 51 2.2

S001-E002 42.65 7.9590  7.9591 -G 7.9963 79587 124 2.7 0.4

S003-E002 56.52 9.934p  9.9325 y. 9.9155 -- -- 19.4 --

S004-E002 31.15 6.112¢  6.1127 @ 6.1108 6.1138 3.0 1.9 -1.1

S005-E002 58.64| 10.3209 10.31Y8 3 10.3098 - -- 11.2 --

S006-E002 54.43 9.647p  9.6477 @ 9.6350 9.6897 4.7 12.9 8.0

S001-E003 17.91 42874 42908 -3 4.2811  4.2B43 3.2 6.3 6.5

1
2
.8
.8
.0
.5
1
S002-E002 27.35 5.4308 5.4303 d.0 5.4289 5.4B17 12.8 1.4 -1.4
4
.0
1
.2
4
.8

S002-E003 36.63 7.582 7.5868 -4 7.5198  7.5812 14 2.2 6.6

D
S003-E003 80.37 | 13.7696 13.7990 -29.4 13.7%28 13.7685 -J15.7 16.8 | 305

S004-E003 36.40 7.4953  7.495%3 g0 7.4900 7.4p38 3.8 5.3 15

S005-E003 45.19 8.8864 8.8912 -98 8.8826 8.8870 4.4 4.0 4.2

S006-E003 66.26 | 12.0506 12.08Y2 -3¢.6 12.0865 12.0436 }7.1 141 | 43.6

Table C.5: Results for forward and reverse ray tracing with ART_PB and RKP for the model shown in
Figure C.1.
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Figure C.1  a) Synthetic velocity model

and shot - receiver distribution. Shot loca-
tions (grey diamonds) are marked EOOx, re-
ceiver locations (black triangles) SO0O0x.
b) v(z) profiles through the undisturbed mod-
el and the center of the high and low velocity
anomalies. Note that the velocity anomalies
decay linearly to the undisturbed model with-
in 5 km from the shown borders (resp. within
1 km at the upper border of the low velocity
model, as also apparent from the v(z) pro-
files).
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Figure C.2 Horizontal projections of rays resulting from ART_PB (dashed lines) and RKP (solid lines)
ray tracing to stations S003, S006, S005 (from right to left, cf Fig. C.1). a) Source E002 b) Source
E003. Dotted lines around the velocity anomalies denote region where anomaly decays to the back-
ground model. Note the significant differences for rays crossing both velocity anomalies.



Figure C.3 3D perspective plot for the RKP (solid line) and ART_PB (dashed line) rays from
source E003 to receiver S003. Projections of the rays on the bottom xy-plane and the backward xz-
plane are shown with grey lines. The RKP ray is 17 ms faster than the ART_PB ray.
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