Conference paper Open Access

Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications

Delvaux, Jeroen; Gu, Dawu; Verbauwhede, Ingrid; Hiller, Matthias; Yu, Meng-Day


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.55449</identifier>
  <creators>
    <creator>
      <creatorName>Delvaux, Jeroen</creatorName>
      <givenName>Jeroen</givenName>
      <familyName>Delvaux</familyName>
      <affiliation>KU Leuven</affiliation>
    </creator>
    <creator>
      <creatorName>Gu, Dawu</creatorName>
      <givenName>Dawu</givenName>
      <familyName>Gu</familyName>
      <affiliation>Shanghai Jiao Tong University</affiliation>
    </creator>
    <creator>
      <creatorName>Verbauwhede, Ingrid</creatorName>
      <givenName>Ingrid</givenName>
      <familyName>Verbauwhede</familyName>
      <affiliation>KU Leuven</affiliation>
    </creator>
    <creator>
      <creatorName>Hiller, Matthias</creatorName>
      <givenName>Matthias</givenName>
      <familyName>Hiller</familyName>
      <affiliation>Technische Universität München</affiliation>
    </creator>
    <creator>
      <creatorName>Yu, Meng-Day</creatorName>
      <givenName>Meng-Day</givenName>
      <familyName>Yu</familyName>
      <affiliation>Verayo Inc.</affiliation>
    </creator>
  </creators>
  <titles>
    <title>Efficient Fuzzy Extraction of PUF-Induced Secrets: Theory and Applications</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2016</publicationYear>
  <subjects>
    <subject>fuzzy extractor, secure sketch, min-entropy, physically unclonable functions, coding theory</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2016-08-17</date>
  </dates>
  <resourceType resourceTypeGeneral="Text">Conference paper</resourceType>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/55449</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/ecfunded</relatedIdentifier>
    <relatedIdentifier relatedIdentifierType="URL" relationType="IsPartOf">https://zenodo.org/communities/hector</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode">Creative Commons Attribution Non Commercial Share Alike 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;The device-unique response of a physically unclonable function (PUF) can serve as the root of trust in an embedded cryptographic system. Fuzzy extractors transform this noisy non-uniformly distributed secret into a stable high-entropy key. The overall efficiency thereof, typically depending on error-correction with a binary [n; k; d] block code, is determined by the universal and well-known (n - k) bound on the min-entropy loss. We derive new considerably tighter bounds for PUF-induced&lt;/p&gt;

&lt;p&gt;distributions that suffer from, e.g., bias or spatial correlations. The bounds are easy-to-evaluate and apply to large non-trivial codes, e.g., BCH, Hamming and Reed-Muller codes. Apart from an inherent reduction in implementation footprint, the newly developed theory also facilitates the analysis of state-of-the-art error-correction methods for PUFs. As such, we debunk the reusability claim of the reverse fuzzy extractor. Moreover, we provide proper quantitative motivation for debiasing schemes, as this was missing in the original proposals.&lt;/p&gt;</description>
    <description descriptionType="Other">H2020 644052 / HECTOR</description>
  </descriptions>
  <fundingReferences>
    <fundingReference>
      <funderName>European Commission</funderName>
      <funderIdentifier funderIdentifierType="Crossref Funder ID">10.13039/501100000780</funderIdentifier>
      <awardNumber awardURI="info:eu-repo/grantAgreement/EC/H2020/644052/">644052</awardNumber>
      <awardTitle>HARDWARE ENABLED CRYPTO AND RANDOMNESS</awardTitle>
    </fundingReference>
  </fundingReferences>
</resource>
68
17
views
downloads
All versions This version
Views 6868
Downloads 1717
Data volume 9.3 MB9.3 MB
Unique views 6868
Unique downloads 1515

Share

Cite as