Journal article Open Access
K. B. V. Brahma Rao; R Krishnam Raju Indukuri; P. Suresh Varma; M. V. Rama Sundari
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Dimensionality Reduction, Data Mining, Independent Component Analysis, Knowledge Reduction, HDFS</subfield> </datafield> <controlfield tag="005">20211001134840.0</controlfield> <controlfield tag="001">5543718</controlfield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Ph.D, Department of Computer Science and Engineering, Adikavi Nannaya University, Rajamahendravaram (A. P), India.</subfield> <subfield code="a">R Krishnam Raju Indukuri</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Professor & Dean of Academics Department of Computer Science & Engineering of Adikavi Nannaya University, Rajamahendravaram (A. P), India</subfield> <subfield code="a">P. Suresh Varma</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Ph.D, Department of Computer Science and Engineering, Adikavi Nannaya University, Rajamahendravaram (A. P), India.</subfield> <subfield code="a">M. V. Rama Sundari</subfield> </datafield> <datafield tag="700" ind1=" " ind2=" "> <subfield code="u">Publisher</subfield> <subfield code="4">spn</subfield> <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication(BEIESP)</subfield> </datafield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">345263</subfield> <subfield code="z">md5:534ce0b5c8939b6424e95a2e913589f7</subfield> <subfield code="u">https://zenodo.org/record/5543718/files/D65081110421.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-11-30</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:5543718</subfield> </datafield> <datafield tag="909" ind1="C" ind2="4"> <subfield code="c">1-6</subfield> <subfield code="n">4</subfield> <subfield code="p">International Journal of Recent Technology and Engineering (IJRTE)</subfield> <subfield code="v">10</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="u">Ph.D, Department of Computer Science and Engineering, Adikavi Nannaya University, Rajamahendravaram (A. P), India.</subfield> <subfield code="a">K. B. V. Brahma Rao</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">Evaluation of Various DR Techniques in Massive Patient Datasets using HDFS</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="650" ind1="1" ind2=" "> <subfield code="a">ISSN</subfield> <subfield code="0">(issn)2277-3878</subfield> </datafield> <datafield tag="650" ind1="1" ind2=" "> <subfield code="a">Retrieval Number</subfield> <subfield code="0">(handle)100.1/ijrte.D65081110421</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>The objective of comparing various dimensionality techniques is to reduce feature sets in order to group attributes effectively with less computational processing time and utilization of memory. The various reduction algorithms can decrease the dimensionality of dataset consisting of a huge number of interrelated variables, while retaining the dissimilarity present in the dataset as much as possible. In this paper we use, Standard Deviation, Variance, Principal Component Analysis, Linear Discriminant Analysis, Factor Analysis, Positive Region, Information Entropy and Independent Component Analysis reduction algorithms using Hadoop Distributed File System for massive patient datasets to achieve lossless data reduction and to acquire required knowledge. The experimental results demonstrate that the ICA technique can efficiently operate on massive datasets eliminates irrelevant data without loss of accuracy, reduces storage space for the data and also the computation time compared to other techniques.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">issn</subfield> <subfield code="i">isCitedBy</subfield> <subfield code="a">2277-3878</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.35940/ijrte.D6508.1110421</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">article</subfield> </datafield> </record>
Views | 57 |
Downloads | 36 |
Data volume | 12.4 MB |
Unique views | 55 |
Unique downloads | 36 |