
This project has received funding from the European Union's
Horizon 2020 research and innovation programme under
Grant Agreement No. 957788.

Funding Instrument: Innovation Action
Call: H2020-LC-SC3-2020-EC-ES-SCC
Call Topic: LC-SC3-ES-10-2020 - DC – AC/DC hybrid grid for a modular,

resilient and high RES share grid development

Project Start: 1 October 2020
Project Duration: 48 months

Beneficiary in Charge: Engineering - Ingegneria Informatica SPA (ENG)

Document Identifier: doi:10.5281/zenodo.5537587

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the Consortium (including the Commission Services)
CO Confidential, only for members of the Consortium (including the Commission Services)

Hybrid Provision of Energy based on Reliability and
Resiliency by Integration of Dc Equipment

Work Package WP5

Open and secure ICT for modular resilient optimized hybrid grid

Deliverable D5.1

HYPERRIDE ICT platform specification

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Deliverable Information

Document Administrative Information
Project Acronym: HYPERRIDE
Project Number: 957788
Deliverable Number: D5.1
Deliverable Full Title: HYPERRIDE ICT platform specification
Deliverable Short Title: ICT platform specification
Document Identifier: HYPERRIDE-D51-ICTPlatformSpecification-final
Beneficiary in Charge: Engineering - Ingegneria Informatica SPA (ENG)
Report Version: v1.4
Contractual Date: 30/09/2021
Report Submission Date: 23/11/2021
Dissemination Level: PU
Nature: Report
Lead Author(s): M. Mammina, A. Rossi (ENG)
Co-author(s): H. Humer, P. Smith (AIT), F. Bellesini, E. Mancinelli (EMOT), A. Dognini, C.

Joglekar, Z. Pan (RWTH)
Keywords: Platform, Requirements, Functionalities, Security, FIWARE, interoperability, Eu-

ropean Union (EU), H2020 Project, HYPERRIDE, GA 957788
Status: draft, x final, submitted

Change Log

Date Version Author/Editor Summary of Changes Made
01/09/2021 v1.0 M. Mammina, A. Rossi (ENG) Initial version
28/09/2021 v1.1 M. Mammina, A. Rossi (ENG), H.

Humer, P. Smith (AIT), F. Bellesini,
E. Mancinelli (EMOT), A. Dognini,
C. Joglekar, Z. Pan (RWTH)

Draft version for review

08/10/2021 v1.2 D. Dujic (EPFL), F. Bellesini
(EMOT)

Internal review and improvements

02/11/2021 v1.3 E. Mrakotsky (AIT) Language review and improvements
23/11/2021 v1.4 G. Jambrich, T. Strasser (AIT) Final version

Deliverable D5.1 doi:10.5281/zenodo.5537587 2 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Table of Contents
Executive Summary ... 7

1. Introduction .. 9
1.1 Purpose and Scope of the Document ... 9
1.2 Structure of the Document ... 9
1.3 Intended Audience ... 9
1.4 Relations to Other Activities ... 10

2. Requirement Elicitation and Analysis.. 11
2.1 Methodology ... 11
2.2 Functional Requirements ... 13
2.3 Non-Functional Requirements .. 15

3. Overarching Architecture ... 18
3.1 Methodology ... 18
3.2 Overview.. 19
3.3 Main Modules ... 20
3.4 Main Processes ... 28
3.5 Mapping Modules-Requirements ... 31
3.6 HYPERRIDE Services using the Open ICT Platform ... 37
3.7 Next Steps.. 42

4. Conclusions .. 44

References .. 45

Appendix A. Non-Functional Requirement Minimal Checklist...................................... 46

Appendix B. Services Implemented in HYPERRIDE... 48
B.1 Open Reliability Information.. 48

Appendix C. EV Smart Charging System ... 49

Deliverable D5.1 doi:10.5281/zenodo.5537587 3 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

List of Figures
Figure 1: Methodological approach (Lucassen & Dalpiaz, 2016). ... 18
Figure 2: Overarching HYPERRIDE Open Information and Communication Technologies (ICT)

Platform Architecture and Integrated Tools. .. 20
Figure 3: NGSI data model (FIWARE-NGSI v2 Specification, n.d.). .. 21
Figure 4: NGSI interactions of an Internet of Things (IoT) Agent with the context broker (iotagent-

node-lib Architecture, n.d.). ... 29
Figure 5: Authentication Level 1 Security... 30
Figure 6: Platform Level Authorisation. ... 30
Figure 7: Message Broker: publish/subscribe pattern. ... 31
Figure 8: HYPERRIDE services using the Open ICT Platform. .. 37
Figure 9: Context of Open Reliability Database. ... 41
Figure 10: EMOT network topology. .. 49

Deliverable D5.1 doi:10.5281/zenodo.5537587 4 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

List of Tables
Table 1: Open ICT Platform Functional Requirements.. 13
Table 2: Open ICT Platform Non-Functional Requirements. .. 16
Table 3: Mapping Modules-Requirements. .. 31

Deliverable D5.1 doi:10.5281/zenodo.5537587 5 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

List of Abbreviations
AC Alternating Current
ACLs Access Control Lists
API Application Programming Interface
ABAC Attribute-Based Access Control
B2B Business to Business
CKAN Comprehensive Knowledge Archive Network
DC Direct Current
DG Distributed Generators
EARS Easy Approach to Requirements Syntax
EC European Commission
EV Electric Vehicles
GDPR European General Data Protection Regulation
GUI Graphical User Interface
HTTP HyperTextTransfer Protocol
ICT Information and Communication Technologies
IdM Identity Manager
IEC International Electrotechnical Commission
IoT Internet of Things
KPI Key Performance Indicators
LoRaWAN Long Range Wide Area Network
LWM2M Lightweight Machine to Machine
M2M Machine to Machine
MCDA Multiple-Criteria Decision Analysis
MQTT Message Queue Telemetry Transport
NGSI Next Generation Service Interface
NIST National Institute of Standards and Technology
OPC UA Open Platform Communications Unified Architecture
OPF Optimal Power Flow
PBAC Policy-Based Access Control
PEP Policy Enforcement Point
PDP Policy Decision Point
PMUs Phasor Measurement Units
RBAC Role-Based Access Control
SGAM Smart Grid Architecture Model
SIEM Security Information and Event Management
SSO Single Sign-On
UML Unified Modeling Language
VPS Virtual Private Server
WP Work Package
XACML eXtensible Access Control Markup Language
XML Extensible Markup Language

Deliverable D5.1 doi:10.5281/zenodo.5537587 6 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Executive Summary
ICT plays a crucial role in a smart grid: Digital technology allows to monitor and manage the
transport of electricity from all generation sources to meet the different electricity demands of
end users. A central logic allows to coordinate the needs and capacities of all generators,
network operators, end users and stakeholders in the electricity market in order to:

• optimise the use and operation of resources;

• minimise costs and environmental impacts;

• maximise the reliability, stability, and resilience of the network.

Another potential approach for the sensing and control of power distribution systems could be
a decentralised logic. From the ICT perspective, decentralised logic’s are interesting in view of
their better scalability and better control on privacy.

Measurement sensors, actuators, automation devices, information technology and communica-
tion equipment permit to exchange information and to send command, control, and automation
signals from the digital management system, which represent the intelligence of the network,
to the physical equipment of the infrastructure electric. The control and actuation signals sent
to the physical devices of the network are no longer responding to the centralised and uni-
directional logic of traditional systems only, but they are the result of advanced management
logic’s that are managing the flows of energy and power in real time, determining the values of
“optimal” setups for distributed generation and load resources (Valenti & Graditi, 2020).

The HYPERRIDE project aims to design and implement an Open ICT Platform enabling:

• the seamless integration and management of devices, regardless of how smart they are;

• scalable and interoperable collection and management of data that support near real time
observability and optimisation of the operation of modular and resilient hybrid Alternating
Current (AC)/ Direct Current (DC) grids;

• the transmission of commands/setpoints for the safe and reliable operation of the grid;

• detection, prediction, prevention of technical and cyber-contingencies.

This document reports the results of the activities conducted in HYPERRIDE aiming at the
elicitation and analysis of functional and non-functional requirements of the Open ICT Platform
and high-level design of the platform architecture in terms of static and dynamic behaviour of
the system.This document is based on the outcomes of Deliverable D2.2 “Use case description,
specification and implementation roadmap report”. Moreover, a questionnaire including general
and customised questions has been submitted to Work Package (WP) leaders and to pilot
leaders to collect expectations from the Open ICT platform in terms of functionalities, standards,
data model, constraints, special technologies/tools needed, data necessary for the business
processes.

A high-level description is given for each logical module that make up the architecture. Main
information exchanges between architectural modules are described. Review and retrospective
activities will be conducted to reflect on the iterations of requirements engineering reported in
this document in the attempt to improve the process going forward and taking into account the
needs that will emerge in the other WPs. New and refined requirements that will emerge in
the next phases of the project will be reported in the accompanying report of Deliverable D5.6.
Low level details on architectural components and their interdependencies, on processes, and

Deliverable D5.1 doi:10.5281/zenodo.5537587 7 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

instructions for the deployment and use will be provided in the accompanying report of Deliver-
ables D5.6 and D5.8. Furthermore, the document gives a short description of the energy ser-
vices that will be evolved in HYPERRIDE according to the needs of hybrid AC/DC grids.

This document will be used as a starting point for the integration activities foreseen in later
on in the project that are summarised in Deliverable D5.6 Open HYPERRIDE ICT platform
(preliminary version) and following D5.8 Open HYPERRIDE ICT platform (final version).

Deliverable D5.1 doi:10.5281/zenodo.5537587 8 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

1 Introduction

1.1 Purpose and Scope of the Document

The deep penetration of unpredictable and only partially controllable renewable energy sources
is evolving the transmission and distribution of electricity networks toward the concept of smart
grids. Smart grids and microgrids strongly depend on ICT, since monitoring, analysing, and
managing of data are a key layer on top of which optimisation, re-configuration, fault detection,
and secure management ensure the reliable, stable, safe and efficient use of the grids.

The HYPERRIDE project aims to design and implement an Open ICT platform enabling:

• the seamless integration and management of devices, regardless of how smart they are;

• scalable and interoperable collection and management of data that are supporting near
real-time observability and optimisation of the operation of modular and resilient hybrid
AC/DC grids;

• the transmission of commands/setpoints for the safe and reliable operation of the grid;

• detection, prediction, prevention of technical and cyber-contingencies.

The open and secure HYPERRIDE Open ICT platform will be lever to propose new ICT services
necessary to set up and manage AC/DC grids.

1.2 Structure of the Document

This document constitutes the HYPERRIDE Open ICT platform specification and it reports
the results of the activities conducted in WP5 Task 5.1 “Open ICT platform requirements and
architecture specification”. It aims at capturing the HYPERRIDE Open ICT platform functional
and non-functional requirements and at providing architecture specifications.

In Section 2, the methodological approach adopted in HYPERRIDE for the requirements elicita-
tion and analysis is introduced and the functional and non-functional requirements of the OPEN
ICT Platform are listed. Section 3 provides the overview of the platform architecture and the
description of the logical modules of which the architecture is composed. Modules are mapped
to the elicited requirements it is expected they meet; main interactions between the modules
are described. In Section 4, results are summarised and conclusions are given. Finally, addi-
tional information is provided in Appendix A. Non-Functional Req. Minimal Checklist, Appendix
B. Services Implemented in HYPERRIDE, and Appendix C. EV Smart Charging System.

1.3 Intended Audience

The intended audience of this report primarily consists of the members of the HYPERRIDE
project consortium and European Commission (EC) representatives tasked with reviewing the
project and its progress towards meeting the specified milestones. The document communi-
cates the HYPERRIDE Open ICT Platform specifications and high-level design to the members
of the development team as it will drive the efforts of the other technical tasks of WP5. Project
stakeholders may also use it to evaluate the adequacy of the HYPERRIDE Open ICT Platform
from the perspective of their individual areas of expertise.

Deliverable D5.1 doi:10.5281/zenodo.5537587 9 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

1.4 Relations to Other Activities

The requirement elicitation process conducted in Task 5.1 and reported in this document has
as one of its inputs the results of the activities carried out in WP2 Task 2.2 and reported in
the Deliverable D2.2 “Use case description, specification and implementation roadmap report”
(Kazmi et al., 2021) as one of its inputs.

Furthermore, the HYPERRIDE Open ICT Platform which was created for the collection of data
by the field instruments will be provided to the Open ICT platform according to a specific data
model. The acquired data will be leveraged for the energy services developed in WP4, such as
hybrid AC/DC state estimation, Optimal Power Flow (OPF), fault location, isolation and restora-
tion services.

Deliverable D5.1 doi:10.5281/zenodo.5537587 10 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

2 Requirement Elicitation and Analysis
Requirement elicitation and analysis is a crucial process in the software engineering: it is in-
tended to gain knowledge about customer needs and the environment of a software system. It
moulds the shape of the desired end-product and requires effective communication and collab-
oration between stakeholders.

In this section, the methodology and the results of requirement elicitation and analysis activities
carried out in the context of WP5 Task 5.1 are presented. Requirements have been identified
taking into consideration functionalities, technologies, constraints provided by the other WPs
as well.

2.1 Methodology

Software requirements describe the set of functionalities and features that users, customers,
and other stakeholders expect by a target system: functional requirements (e.g., calculations,
data manipulation and processing, and other specific functionalities) help to capture the in-
tended behaviour of the system defining what the system should do. Functional requirements
are supported by non-functional requirements that specify how the system should perform a
certain function; they specify constraints, restrictions, i.e., standards to be used to assess the
operation of a system. Functional requirements drive the application architecture, while non-
functional requirements drive the technical architecture of the system.

Requirement elicitation refers to the process of researching and discovering the requirements
that, in some cases, are obvious, especially when stakeholders specifically request certain fea-
tures, and in other cases are latent, implicit, and, consequently, need to be elicited. Commonly
used elicitation processes are brainstorming, interviews or questionnaires.

Requirement analysis is an iterative process where the gathered requirements are analysed,
refined, and scrutinised to make the requirements consistent and unambiguous. Once the
analysis phase is completed, the understandability of the project may improve significantly.
Requirement modelling is the process of documenting the requirements, usually in different
formats, such as use cases, user stories, natural-language documents, or process specifica-
tion. Review and retrospective activities are conducted to reflect on the previous iterations of
requirements engineering in the attempt to improve the process going forward.

In the context of the HYPERRIDE project, brainstorming, questionnaires, and interviews tech-
niques have been adopted for eliciting the requirements. Moreover, the requirement engineer-
ing process conducted in the context of Task 5.1 (WP5) has made use of the results of the ac-
tivity carried out in Task 2.2 (WP2) and reported in the Deliverable D2.2 “Use case description,
specification and implementation roadmap report” (Kazmi et al., 2021). In Task 2.2, a method-
ology based on the well-known standard and reference architectures, namely as National In-
stitute of Standards and Technology (NIST) (National Institute of Standards and Technology ,
n.d.) and Smart Grid Architecture Model (SGAM)(CEN-CENELEC-ETSI Smart Grid Coordina-
tion Group, 2012), has been used to identify the context, the boundaries, and actors involved
and to define the use cases. The project partners have been involved in several workshops
to collect the inputs that have been later analysed and reported in the form of summary use
cases. Those summary use cases have been used as the basis to derive detailed pilot uses
cases, which were documented using International Electrotechnical Commission (IEC) “Use
Case Methodology” method with IEC 62559-2 templates.

Deliverable D5.1 doi:10.5281/zenodo.5537587 11 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Starting from a shared knowledge of the project goal and pilot expectations formalised in De-
liverable D2.2, the brainstorming activity has resulted in a list of ideas about the Open ICT
platform, spontaneously contributed by the participating project members. A questionnaire was
properly prepared, including general questions and customised questions, and was submitted
to WP leaders and to pilot leaders to collect expectations in terms of functionalities, standards,
data models, constraints, special technologies/tools needed, as well as data necessary for the
business processes. Moreover, the pilot leaders have been requested to identify possible phys-
ical risks and the information necessary to identify abnormal operation of the pilot. Interviews
to WP leaders and pilot leaders have allowed to clarify any doubts on the information collected
through the questionnaire and to elicit latent/implicit requirements.

The Natural Language Specification was chosen to formalise the consolidated requirements.
The requirements are written in normal plain text and expressed using the Easy Approach to
Requirements Syntax (EARS) (Mavin & Novak, 2009), which defines a syntax based on a set
of patterns for writing requirements using natural language as follows:

• Ubiquitous requirements: define fundamental properties of the system that have no pre-
conditions or trigger.
For example, the meeting scheduler shall display the scheduled meetings.

• State-driven requirements: designate properties that must be satisfied while a pre-condition
holds.
For example, WHILE the meeting room is available, the meeting scheduler shall allow the
meeting initiator to book the meeting room.

• Event-driven requirements: specify properties that must be satisfied once a condition
holds.
For example, WHEN the meeting room is booked, the meeting scheduler shall display the
meeting room as unavailable.

• Option requirements: refer to properties satisfied in the presence of a feature.
For example, WHERE a meeting is rescheduled the meeting scheduler shall inform all
participants.

• Unwanted behaviour requirements: define the required system response to an unwanted
external event.
For example, IF the meeting room is unavailable THEN the meeting scheduler shall forbid
booking this meeting room (Bennaceur, Tun, Yu, & Nuseibeh, 2018).

The requirements have been then analysed, consolidated, categorised, and refined (describing
them at a lower level of abstraction). A unique identifier is assigned to each requirement.
Moreover, the requirement is classified and prioritised. The following definitions are intended
as a guideline to prioritise requirements.

• Priority 1 – The requirement is a “must have” functionality.

• Priority 2 – The requirement is needed for improved processing, and the fulfilment of the
requirement will create immediate benefits.

• Priority 3 – The requirement is a “nice to have” functionality.

In case the timescale does not allow for their implementation, requirements with priority 2 and
3 will be the first to be removed.

Deliverable D5.1 doi:10.5281/zenodo.5537587 12 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

2.2 Functional Requirements

Table 1 lists the Open ICT Platform functional requirements. If new requirements emerge in
future phases of the project, they will be reported in the accompanying report of Deliverable
D5.6.

Table 1: Open ICT Platform Functional Requirements.

ID Category Description Priority

FR 01 Data Acquisition The platform shall have an interface to the field instruments
in order to retrieve measurement data from the field.

1

FR 02 Data Acquisition Data from electric equipment and field devices shall be
acquired directly from the apparatuses or indirectly from
SCADA and/or other data acquisition systems.

1

FR 03 Seamless Integration The platform shall be able to use a uniform language in
order to allow the seamless and transparent integration of
electric equipment and field devices, regardless of the pro-
tocol or data format.

1

FR 04 Data Acquisition The platform shall be able to receive real-time measure-
ments from smart meters, monitoring devices, and auto-
matic reading meters.

1

FR 05 Data Processing When low latency is requested, the platform shall be able
to perform real-time message processing in-stream.

3

FR 06 Data Processing The platform shall be able to support the reconciliation and
harmonisation of the monitored data to be provided as in-
put to the HYPERRIDE energy services according to the
interoperability data model schema.

2

FR 07 Commands/Setpoints
Forwarding

The platform shall provide an interface for the transmission
of commands/setpoints to the electrical equipment for the
safe and reliable operation of the grid.

1

FR 08 Data Processing The platform shall provide short to mid-term persistence to
the collected data.

1

FR 09 Data Persistence The platform shall be able to provide long term persistence
to the collected data.

1

FR 10 Data Usage The platform shall provide an interface to access historical
monitoring data.

1

FR 11 Data Acquisition The platform shall provide an interface for uploading open
datasets in different file formats, (e.g., CSV, XLS, JSON,
PDF, etc.)

1

FR 12 Data Acquisition The platform shall support different types of datasets (his-
torical, live, etc.).

1

FR 13 Data Persistence The platform shall store open datasets in a file store. 1

FR 14 Data Persistence A tabular dataset shall be stored in a datastore respecting
the structure of the dataset records.

1

FR 15 Data Access The platform shall provide an interface for accessing open
datasets.

1

FR 16 Data Search The platform shall enable users to search for datasets with
various filters.

1

FR 17 Data Access The platform shall control access to dataset on the basis of
access rights set by the data owner.

1

Deliverable D5.1 doi:10.5281/zenodo.5537587 13 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

ID Category Description Priority

FR 18 Data Update The platform shall inform users for updates on datasets
they use.

1

FR 19 Data Visualisation The platform shall permit to visualise an open dataset. 1

FR 20 Data Update A user having the right to view a dataset can opt to be noti-
fied of changes.

1

FR 21 Data Export The platform shall allow to export an open dataset in differ-
ent file formats (JSON, XLS, CSV).

1

FR 22 Data Acquisition The platform shall support the collection of information
about detected anomalies that identify problems with de-
vices or assets.

1

FR 23 Data Acquisition The platform shall support the collection of information
about intrusions detected in the network.

1

FR 24 Anomalies Processing The platform shall identify the root cause of anomalies due
to either faults or cyber-attacks.

1

FR 25 Anomalies Processing When root cause is identified, the platform shall suggest
countermeasures.

2

FR 26 Data Acquisition The platform shall support the collection of information
about maintenance interventions in the grid.

1

FR 27 Data Acquisition The platform shall support the collection of information
about the weather forecast from a third-party provider.

1

FR 28 Data Acquisition The platform shall support the collection of information
about the production/consumption forecast.

1

FR 29 Data Persistence The platform shall be able to store component reliability in-
formation for all the interested parties to access at any time.

2

FR 30 Data Acquisition The platform shall provide an interface for collecting com-
ponent reliability information.

1

FR 31 Registration The platform shall allow users (individ-
ual/services/applications) to register for an account.

1

FR 32 Authentication The platform shall identify users (individ-
ual/services/applications) before allowing them to use
its functions.

1

FR 33 Authentication The platform shall verify the identity of users (individ-
ual/services/ applications) before allowing them to use its
functions.

1

FR 34 Authorisation The platform shall allow to assign access privileges to au-
thenticated users (individual/services/applications).

1

FR 35 Authorisation The platform shall allow to revoke access privileges to
users (individual/services/applications).

1

FR 36 Authorisation The platform shall check user’s access privileges before al-
lowing them to use protected resources.

1

FR 37 Data Integrity The platform shall prevent the intentional corruption of
data/context information collected via unauthorised cre-
ation, modification, or deletion.

1

FR 38 Authentication The platform shall detect attempted accesses that fail iden-
tification requirements.

2

FR 39 Authentication The platform shall detect attempted accesses that fail au-
thentication requirements.

2

Deliverable D5.1 doi:10.5281/zenodo.5537587 14 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

ID Category Description Priority

FR 40 Authorisation The platform shall detect attempted accesses that fail au-
thorisation requirements.

2

FR 41 Data Access Data shall only be accessible by authenticated and autho-
rised entities.

1

FR 42 Data Processing The platform shall allow to configure a set of metrics/KPIs
based on the historical data.

1

FR 43 Data Processing The platform shall compute the metrics/KPIs and find the
values required for the calculation.

1

FR 44 Data Visualisation The platform shall display metrics/KPIs results. 1

FR 45 Data Visualisation The platform shall be able to display customisable time se-
ries.

1

FR 46 Data Acquisition The platform shall include a UI for keeping track of human
interventions in the grid.

3

FR 47 Data Persistence The platform shall record any human intervention in the
grid.

3

FR 48 Message Forwarding The platform shall be able to forward a message from the
sender to the recipient.

1

2.3 Non-Functional Requirements

Table 2 lists the Open ICT Platform non-functional requirements. The categorisation for non-
functional requirements adopted in HYPERRIDE is reported below:

• Security

• Audit

• Performance

• Capacity

• Availability

• Reliability

• Integrity

• Recovery

• Compatibility

• Maintainability

• Usability

• Documentation

• Legal and Regulatory

A minimal checklist for their identification is reported in Appendix A. Non-Functional Req. Mini-
mal Checklist.

Deliverable D5.1 doi:10.5281/zenodo.5537587 15 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Table 2: Open ICT Platform Non-Functional Requirements.

ID Category Description Priority

NFR 01 Availability The platform shall be accessible and usable upon demand
by an authorized system entity.

1

NFR 02 Usability The platform shall report errors and security breaches in a
timely and automated manner.

1

NFR 03 Usability User interfaces shall allow actors to easily interact with plat-
form tools.

1

NFR 04 Security The platform may not grant access to its resources until the
user creates a strong password.

2

NFR 05 Security The user shall change the initially assigned login authen-
tication information (password) immediately after the first
successful login.

2

NFR 06 Performance The system shall be able to scalable depending on the de-
mands related to data ingestion, processing, and storage.

1

NFR 07 Performance The system shall be able to exchange data with a great
number of devices without altering the performance.

1

NFR 08 Performance Communications shall go through secure TLS channels for
guaranteeing confidentiality of information exchanged.

1

NFR 09 Availability Critical nodes within the platform as shall be replicated and
redundant.

1

NFR 10 Legal and Regulatory The platform must handle data in full compliance with the
European General Data Protection Regulation (GDPR).

1

NFR 11 Legal and Regulatory Avoid and prevent any unnecessary collection, use, and
storage of personal data.

1

NFR 12 Security The platform shall prevent a party to one of its interactions
from denying having participated in all or part of an interac-
tion (non-repudiation).

1

NFR 13 Security The platform shall protect the privacy of the content. 1

NFR 14 Security The platform shall protect the integrity of the communica-
tions.

1

NFR 15 Security The platform should have the capability to protect per-
sonal data using techniques such as anonymisation or
pseudonymisation.

1

NFR 16 Security The platform shall prevent unauthorised actions from being
hidden.

1

NFR 17 Security The platform should have the capability to protect crit-
ical applications (or services) from unauthorized or un-
wanted usage via suitable technologies, such as firewalls
and Access Control Lists (ACLs).

1

NFR 18 Security Only authorised personnel are allowed physical access to
computers and the network.

1

NFR 19 Reliability Backups shall be taken regularly. 1

NFR 20 Security The platform should have the capability to ensure the con-
fidentiality and integrity of data that is communicated using
the public Internet.

1

NFR 21 Compatibility The Open ICT Platform shall provide reconciliation and har-
monisation tools.

1

Deliverable D5.1 doi:10.5281/zenodo.5537587 16 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

ID Category Description Priority

NFR 22 Usability The Open ICT Platform shall support bi-directional data
communication.

1

NFR 23 Compatibility The Open ICT Platform shall allow interoperability with
other IT platforms.

1

NFR 24 Security The platform shall be able to apply privacy policies on dif-
ferent segments of data.

3

Deliverable D5.1 doi:10.5281/zenodo.5537587 17 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

3 Overarching Architecture
This section provides an overview of the high-level architecture of the HYPERRIDE Open ICT
Platform and its tools. Low level details on architectural components and their interdepen-
dencies on processes, and instructions for the deployment and use will be provided in the
accompanying report of Deliverables D5.6 and D5.8.

3.1 Methodology

The process that, starting from the elicitation of the requirements, leads to the design of the
Open ICT Platform architecture and then to its implementation can be described synthetically
as follows (see also Figure 1):

• Goals are achieved through use cases, which describe the behaviour the system should
have.

• Use cases are enabled by functional requirements, which describe the functionalities the
software system must offer.

• Functional requirements lead to the design and implementation of the software architec-
ture.

• Non-functional requirements describe how functional requirements must work.

• Constraints restrict how functional requirements may be implemented.

Figure 1: Methodological approach (Lucassen & Dalpiaz, 2016).

A layered architectural pattern has been adopted to provide a general view of the high-level
HYPERRIDE Open ICT Architecture. A layered architecture abstracts the view of the system
as whole while providing enough detail to understand the roles of individual layers and the re-
lationships in between them. Modules or components with similar functionalities are organised

Deliverable D5.1 doi:10.5281/zenodo.5537587 18 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

into multiple horizontal layers: the pattern does not fix the number and leaves it upon the pref-
erences of the architect. Each layer plays a specific role in the whole system and contributes
to the operation of the layer above it. Each layer depends on the layers beneath it and is com-
pletely independent of the layers on top of it. In this way, these layers can be used strictly,
where the layer only knows of the layer beneath it, or in a flexible manner, and access all layers
beneath it. This leads to layers of isolation: changes made in one layer of the architecture
generally do not impact or affect components in other layers: the change is isolated to the com-
ponents within that layer, and possibly another associated layer. Separation of concerns among
modules/components is the best feature of a layered architecture: modules/components within
a specific layer are only dealing with the logic that pertains to that layer, making the subsequent
phases of development easier.

The architectural modules will be further detailed by describing the architectural components
and showing how components are wired together by using Unified Modeling Language (UML)
component diagrams.

The dynamic behaviour of the architecture will be described making use of UML sequence
diagrams, which depicts the interaction between the parties involved in a process, showing the
message interchange in sequential order.

The deployment diagram will be used to map the software architecture created at design stage
to the physical system architecture that executes it; it also determines how the software is
deployed on the underlying hardware. A guide for the proper deployment will be provided as
well.

This document focuses on high-level information of the HYPERRIDE Open ICT Platform ar-
chitecture, while possible updates on the architecture and all details on components and pro-
cesses will be provided in the D5.6 accompanying report, and instructions for the deployment
will be provided in Deliverable D5.8 accompanying report.

3.2 Overview

The overarching view of the HYPERRIDE Open ICT Platform architecture and integrated tools,
depicted in Figure 2, comprises three horizontal layers, namely:

• The Presentation Layer is the frontend layer of the architecture and is responsible for han-
dling all user interface and browser communication logic. Presentation layer components
will implement the functionalities required to allow users to interact with the system.

• The Knowledge Layer represents the underlying domain, mostly consisting of context
information and data.

• The Acquisition and Interoperability Layer main role is to capture data from different de-
vices and, when requested, to convert those data in standardised context information.

In addition, the architecture includes a cross-cutting Security Layer. It is responsible for all
concerns related to security, both cyber and physical. From the cyber point of view, it provides
for authenticated and authorised access to the system resources. From the physical point of
view, it supports situation awareness and provides insights about the root cause of the alert-
ing events generated by the tools that provide for the continuous monitoring of the system
behaviour.

Deliverable D5.1 doi:10.5281/zenodo.5537587 19 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Figure 2: Overarching HYPERRIDE Open ICT Platform Architecture and Integrated Tools.

3.3 Main Modules

In this section, an overview of the main functionalities, main inputs and expected outputs for
each architectural logical module is given.

3.3.1 Context Information Manager

The central block is the Context Information Manager, which is represented by the Orion Con-
text Broker from FIWARE1 (Future Internet PPP: Led by industry, driven by users Addressing
the challenge of Internet development in Europe, n.d.). The Context Information Manager al-
lows to model, manage, and gather context information at large scale enabling context-aware
applications.

Technically, it is a publish-subscribe system, which holds the current state of the application.
The changing of the subscribed context is notified. In addition, the Orion Context Broker can
manage the whole lifecycle of context information including updates, queries, and registrations.
The Context Broker is based on a Mongo NoSQL database with a REST API using the Open
Mobile Alliance‘s Next Generation Service Interface (NGSI) protocol (NGSI Context Manage-
ment - Approved Version 1.0, 2012).

The FIWARE NGSI API defines:

• a data model for context information, based on a simple information model using the
notion of context entities;

• a context data interface for exchanging information by means of query, subscription, and
update operations;

• a context availability (interface for exchanging information on how to obtain context infor-
mation).

1FIWARE is a curated framework of open-source platform components that can be assembled together and with
other third-party platform components to accelerate the development of Smart Solutions.

Deliverable D5.1 doi:10.5281/zenodo.5537587 20 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

The main elements in the NGSI data model are context entities, attributes and metadata, as
shown in Figure 3.

Figure 3: NGSI data model (FIWARE-NGSI v2 Specification, n.d.).

An entity represents a thing, i.e., any physical or logical object (a sensor, a person, a room,
an issue in a ticketing system, etc.). It is characterised by an identifier and a type describing
the “thing” represented by the entity. Each entity can have one or more context attributes, or
properties:

• a name (what kind of property),

• an attribute type (the NGSI value type of the attribute value),

• an attribute value (the actual data),

• and metadata (describing properties of the attribute value).

Context metadata has:

• a metadata name (describing the role of the metadata),

• a metadata type (describing the NGSI value type of the metadata value), and

• a metadata value containing the actual metadata.

3.3.2 Message Broker

For the sake of completeness, a message broker has been included in the Open ICT Platform
to enable applications, systems, and services using data format/protocols for which any NGSI
Agent has been conceived to communicate with each other and exchange information anyway.
The Message Broker mediates communications, minimising the mutual awareness that appli-
cations/system/services should have of each other in order to be able to exchange messages,
effectively implementing decoupling. This allows interdependent applications/system/services
to talk with one another directly, even if they were written in different languages or implemented
on different platforms.

Message Broker is in charge of storing, routing, and delivering messages to the appropriate
destinations. It acts as an intermediary for the communications, allowing senders to issue
messages without knowing where the receivers are, whether or not they are active, or how
many of them there are.

In order to provide reliable message storage and guaranteed delivery, the Message Broker
stores and orders the messages in a message queue until the consuming applications can
process them. Messages remain in the queue until receipt is confirmed. The asynchronous
messaging feature guarantees that messages will be delivered only once and in the correct
order relative to other messages. This prevents the loss of valuable data and enables systems
to continue functioning even in the case of the intermittent connectivity or latency issues.

Deliverable D5.1 doi:10.5281/zenodo.5537587 21 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

3.3.3 REST/MQTT API

An Application Programming Interface (API) is a set of rules that defines how applications or
devices can connect and communicate with each other. It is a mechanism that enables an
application or service to access a resource within another application or service. The applica-
tion or service doing the accessing is called the client and the application or service containing
the resource is called the server. A REST API is an API that conforms to the design princi-
ples of the REST, or representational state transfer architectural style, sometimes referred to
RESTful APIs; the state of a resource at any particular instant, or timestamp, is known as the
resource representation. REST APIs communicate via HyperTextTransfer Protocol (HTTP) re-
quests to perform standard database functions like creating, reading, updating, and deleting
records within a resource.

REST APIs are used for synchronous communications: once the request is sent, the caller
waits for the resource which is given after the needed elaborations by the responder. In case of
asynchronous communications, MQTT protocol can be supported. MQTT implements a classic
publish/subscribe pattern. In this case, the caller does not wait for the response, but subscribes
to the notification of a particular resource and becomes a subscriber. Once a publisher creates
or updates a particular resource, all the subscribers are notified by the platform. An MQTT
message consists of a topic and a payload. The topic is the string representation of the path
of the resource to which subscribers are registered, while the payload contains the resource
itself, sent by the publishers. Resources are generally codified by means of descriptive/markup
languages, such as XML, but the most adopted standard is JSON.

3.3.4 IoT Agent

An IoT Agent is a component that lets a group of devices send their data to and have it man-
aged by a Context Broker using their own native protocols. IoT Agents allow to simplify the
management and the integration of devices by collecting data from devices through hetero-
geneous protocols and translating them into the standard platform language, that is in NGSI
entities; NGSI also allows to send commands to devices.

IoT Agents should also be able to deal with security aspects of the platform (authentication and
authorisation of the channel). NGSI Agents may also facilitate the integration of vertical solu-
tions (smart meters, smart industry, smart building, smart home, energy storages, e-vehicles,
etc.) and of other sources of data (e.g., energy management systems, social networks, etc.)
with the Open ICT Platform. IoT Agents already exist or are in development for many IoT com-
munication protocols and data models. Available IoT Agents are presented in the FIWARE
catalogue (FIWARE catalogue, n.d.):

• IoT Agent for JSON – a bridge between HTTP/Message Queue Telemetry Transport
(MQTT) messaging (with a JSON payload) and NGSI;

• IoT Agent for Lightweight Machine to Machine (LWM2M) – a bridge between the Lightweight
M2M protocol and NGSI;

• IoT Agent for Ultralight – a bridge between HTTP or MQTT messaging (with an Ultra-
Light2.0 payload) and NGSI;

• IoT Agent for Long Range Wide Area Network (LoRaWAN) – a bridge between the Lo-
RaWAN protocol and NGSI;

Deliverable D5.1 doi:10.5281/zenodo.5537587 22 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

• IoT Agent for Open Platform Communications Unified Architecture (OPC UA) – a bridge
between the OPC UA protocol and NGSI;

• IoT Agent for Sigfox – a bridge between the Sigfox protocol and NGSI.

3.3.5 Custom NGSI Agent

A custom NGSI Agent is an IoT Agent, in which the protocols of devices are not defined in the
FIWARE catalogue. The custom NGSI Agent has the same function as IoT Agent. It provides
the possibility of customisation and improves the flexibility of selecting devices. One example
is the XML protocol, in which the custom IoT Agent is created, based on the IoT Agent Node.js
library and the message can be read and sent to the Orion Context Broker.

3.3.6 Identity Manager

The Identity Manager (IdM) module includes the functionalities needed to manage identities
and automate identity-related business processes that improve security. It manages specific
permissions and policies to authenticate users before having access to resources integrated
into the Open ICT platform. The IdM holds all user information and offers a Single Sign-
On (SSO) service for the applications so that they do not need to maintain user information
(e.g., no private credentials), and one user account can be used for all applications using the
platform.

Along with two more security modules, namely the Policy Enforcement Point (PEP) (see Sec-
tion 3.3.7), which protects a resource by enforcing access control, and the Policy Decision
Point (PDP) (see Section 3.3.8), which evaluates the policy and makes an access determina-
tion, the IdM enables the OAuth2-based Business to Business (B2B) authorisation security to
services and applications. OAuth2 is the open standard for access delegation to grant access
rights. B2B OAuth2 usually represents an application that calls another application or service
without end user intervention; a client (business client application or “client” as in OAuth spec)
makes a call to a service, business service or “resource server” as in OAuth spec), and requests
some business information, passing the access token. Since there is no end user intervention,
the client needs to be pre-authorised to have access to the resource. The IdM is essentially an
OAuth2 authorization server and therefore supports authentication for the entire platform.

In the context of a smart grid, sensors represent a massive security risk, since potential attack-
ers can get easily access to their hardware. Thus, while protecting the communication channel
(e.g., with TLS or VPN), enforcing authentication and authorisation is crucial too. The IdM
responsible for managing accounts for sensors and for creating permission rules that allows
the sensor to only send data of a specific type to a specific service endpoint is eliminating the
chance to spoof some other sensor identity. The same approach can be adopted for other field
devices.

Since, as stated in the Grant Agreement, a FIWARE-compliant version of the reference Open
ICT platform and tools will be implemented, it has been agreed to integrate the FIWARE
Generic Enabler KeyRock Identity Manager into the HYPERRIDE Open ICT platform (FIWARE,
2021a). Keyrock is essentially an OAuth2 authorisation server. The main identity management
concepts within Keyrock are:

Deliverable D5.1 doi:10.5281/zenodo.5537587 23 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

• Users (“resource owners” role in the OAuth2 framework):

– have a registered account in Keyrock;

– have credentials;

– can manage organisations and register applications.

• Organisations:

– are a group of users that share resources of an application (roles and permissions);

– users can be members or owners (manage the organisation).

• Applications (“clients” role in the OAuth2 framework):

– request protected user data;

– are able to authenticate users using their OAuth credentials (ID and secret) which
unequivocally identify the application;

– define roles and permissions to manage authorisation of users and organisations;

– can register Pep Proxy to protect backends;

– can register IoT Agents.

Keyrock provides both a GUI and an API interface.

3.3.7 Policy Enforcement Point

The PEP performs the actual authentication and optional authorisation checks. As anticipated
in section section 3.3.6, the PEP interacts with the IdM and the PDP, by requesting and sub-
sequently enforcing authorisation decisions. The Identity Management must be used to create
and manage users and applications and to configure roles and permissions for them.

The PEP plays the role of the so-called “resource server” according to OAuth2. The resource
server hosts information that is sensitive and, therefore, can only be accessed by authorised
requests. In fact, the PEP adds security by transparently acting on behalf of the actual ser-
vice/application hosting the security information that needs to be protected.

The PEP proxy needs to be informed about addresses and ports of the service/application
it is protecting and about of the other security components (IdM and PDP). When a new
application is registered in the IdM, a pair of credentials for the PEP proxy is generated and
those credentials are used by the PEP to authenticate with the IdM. This process allows to
check the authentication. The authorisation decisions can be part of the application logic or
can be moved at platform layer security by deploying authentication based on permissions
by providing information on user’s roles and request details to the PDP, which verify whether
this information fits with its security policies and decides whether access should be granted or
not.

FIWARE GE PEP Wilma will be integrated into the reference Open ICT platform (FIWARE,
2021b). Wilma acts as a proxy that enforces access control to services and applications: only
permitted users can access to applications or RESTful services. Wilma is a backend compo-
nent, without frontend interface.

Deliverable D5.1 doi:10.5281/zenodo.5537587 24 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

3.3.8 Policy Decision Point

The PDP provides authorisation decisions based on various attributes given by the PEP about
each incoming access request, and policies that define multiple rules. It verifies whether these
attributes (and therefore the access request) satisfy certain conditions. By replacing all the
attribute references in the policy with these input values, PDP is able to evaluate the policy and
determine whether the access should be granted.

FIWARE provides a PDP reference implementation called AuthZForce (FIWARE, 2021c), which
provides an API to get authorisation decisions based on authorisation policies, and authorisa-
tion requests from the PEP. The API follows the REST architecture style, and complies with
XACML v3.0 (OASIS, 2021). eXtensible Access Control Markup Language (XACML) is an OA-
SIS standard for authorisation policy format and evaluation logic, as well as for the authorisation
decision request/response format. The standard defines a declarative fine-grained, attribute-
based access control policy language, an architecture, and a processing model describing how
to evaluate access requests according to the rules defined in policies.

As a published standard specification, one of the goals of XACML is to promote common ter-
minology and interoperability between access control implementations by multiple vendors.
XACML is primarily an Attribute-Based Access Control (ABAC) system, also known as a Policy-
Based Access Control (PBAC) system, where attributes (bits of data) associated with a user or
action, or a resource are inputs into the decision of whether a given user may access a given
resource in a particular way. Role-Based Access Control (RBAC) can also be implemented in
XACML as a specialisation of ABAC.

Although policies may be edited by the IdM user interface, they need to be stored in the PDP
as well. Policies are created automatically when defining a role in the IdM (formally written in
XACML by the system); however, users are allowed to write custom rules using the Extensible
Markup Language (XML).

3.3.9 Security Reasoning Engine

The main responsibilities of the Security Reasoning Engine module are the root-cause analysis
for identifying the root causes of faults or problems and the identification of countermeasures
to prevent similar incidents. The REASENS Framework has been identified as starting point
for the root-cause analysis. It is a hierarchical REAsoning system that enables the collection
of events from distributed and heterogeneous SENSors. Its purpose is to support reasoning
(analyses) about the potential root causes of events that are generated by sensors, e.g., to
determine whether they pertain to a fault or a cyber-attack. The REASENS framework will be
extended to enable the ingestion of events from the systems that perform anomaly detection
in AC/DC networks. Further, suitable causal models will be developed that can be used to
reason about their root causes, detection that leverages state estimation algorithms that will be
developed in WP5.

The REASENS framework is based on a micro-service and event-driven architecture, which in-
tegrates different security sensors and enables reasoning about the monitored system state, to
enable situation awareness. A microservice architecture facilitates the integration of indepen-
dent (standalone) applications, written in different programming languages. The event-driven
architecture enables the system to be dynamically updated whenever something changes with-
out the need to periodically query the state of all the subcomponents. Examples of security
sensors include anomaly detection systems that monitor both host and network activity, net-

Deliverable D5.1 doi:10.5281/zenodo.5537587 25 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

work intrusion detection systems to check if the network has been manipulated; and host intru-
sion detection systems to alert on suspicious activities within the hosts. In addition, sensors to
ensure system safety could be deployed locally to monitor physical process sensor measure-
ments (anomaly detection) or to check whether control commands are safe, given the current
system state (hazardous control detection).

At the time of writing, there are two ways to deploy the REASENS Framework: using the first
option, sensors are communicating using the MQTT protocol with a more centrally located com-
ponent (server), which performs high level alert correlation based on the input from the security
sensors. Sensors publish events to an MQTT broker, which are then normalized by a parser
and published further to reasoning and complex processing components, e.g., an Evidential
Network or Recurrent Neural Networks, or other alert correlation algorithms. Secondly, an im-
plementation has been developed that uses the Elastic Stack2. Using this deployment model,
sensors place events onto an Apache Kafka-based message queue3, which distributes them
to other components in the architecture. After being processed by Kafka, events can then be
normalised using Logstash and forwarded to a reasoning engine or a Security Information and
Event Management (SIEM) solution, for example. The normalised events as well as raw mes-
sages from the sensors can be logged into a (Elasticsearch-based) database and accessed
via a (Kibana-based) Graphical User Interface (GUI). The GUI offers a web interface (dash-
board) with presentation of the system state, logging of the security events, alarms (generated
by engines), register and configure sensors etc. The REASENS architecture allows for dif-
ferent types of sensors and reasoning engines which could subscribe to messages sent from
selected security sensors. In the current implementation, an Evidential Network is deployed as
a reasoning engine.

3.3.10 Historical Data Storage

The Historical Data Storage module provides long term persistence to the data. The Context
Information Manager module presented in Section 3.3.1, for example, is enabled to store data
in the short to medium; therefore, the Historical Data Storage module gives the opportunity to
create a historical view of the context.

According to the nature of the data to be stored, a particular kind of database is more appro-
priate than others. As an example, for monitoring data, the most suitable kind of database is
timeseries-based. In this kind of databases the timestamp plays a fundamental role: all mea-
surements have at least a timestamp, which is indexed, and one or more fields to be stored,
which are not indexed. Optionally, also tags can be given, which are indexed as well. In this
way, this kind of databases is particularly suitable to store and query data by means of time
ranges and the optional tags. One example of such a database is influxDB.

Another possible option for long-term storage are No-SQL ones. These databases have the
possibility to store and query documents which are not related to particular tables, as it hap-
pens in the relational ones, such as MySQL or Postgres. Documents are instead stored in
collections and stored and retrieved by a unique id. One example of such a kind of database is
MongoDB.

The Historical Data Storage is also conceived as DataStore for open datasets.

2https://www.elastic.co/elastic-stack/
3https://kafka.apache.org/

Deliverable D5.1 doi:10.5281/zenodo.5537587 26 of 51

https://www.elastic.co/elastic-stack/
https://kafka.apache.org/
https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

3.3.11 Open Data Interface

The Open Data Interface module is in charge of the publication, management, and consumption
of open data, including both static and dynamic datasets: it allows to catalogue, upload, and
manage open datasets and data sources and also supports searching, browsing, visualising,
or accessing open data.

A Comprehensive Knowledge Archive Network (CKAN) based open data portal will be inte-
grated in the HYPERRIDE Open ICT Platform (CKAN code architecture, 2018). CKAN is a
data management system for powering data hubs and data portals developed and managed
by the Open Knowledge Foundation. It is a reference software for the publication of institu-
tional, governmental, and private open data, being widely used also by companies that provide
users with information related to the services provided (transport, services to citizens, utilities
in general). It is an open-source software, whose core technology is maintained by an active
community, while it is modified and extended by an even larger community of developers, who
are contributing to a growing library of CKAN extensions.

The units of data published in CKAN are called “datasets” (or packages). A dataset is a collec-
tion of data, like measurement temperature readings from sensors. A dataset contains:

• “Metadata”, that is information about the data, for example, the title and publisher of the
dataset, the date, the formats, etc.

• A number of “resources”, which contain the data. A resource can be a CSV or Excel
spreadsheet, XML file, PDF document, image file, linked data in RDF format, etc., since
CKAN does not mind what format the data is. CKAN can either store the resource inter-
nally or store it as a link, in case the dataset is elsewhere on the web.

A dataset can contain any number of resources; for example, different resources could contain
the data for different years, or the same data but in different formats. It also offers a powerful
API that allows third-party applications and services to be built around it. When enabled, CKAN
FileStore allows users to upload data files to CKAN resources. While the FileStore provides
the storage of whole files with no way to access or query parts of that file (the file can be only
downloaded as a whole), the DataStore is like a database where data elements are accessible
via a simple web API and queryable. The DataStore API allows tabular data to be quickly and
easily stored inside CKAN DataStore.

3.3.12 Charts/KPIs User Interface

The Charts/Key Performance Indicators (KPI) User Interface module takes raw data, metrics,
or KPIs and displays this information in simple charts and graphs on dedicated dashboards.
This module provides a simple tool for tracking and analysing performance towards prefixed
goals, thus making data-driven decisions more efficient.

According to the data and KPI to be visualised, there are plenty of tools which can be used
for this purpose. For example, they can display in a graphical way metrics and raw data taken
from the historical series stored in the Historical Data Storage module. This kind of tools allows
also to fulfil a series of requirements, such as selection of time intervals and ranges, interpo-
lation methods, and so on. An example of a tool that is well suited to represent time series is
Grafana.

Deliverable D5.1 doi:10.5281/zenodo.5537587 27 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

3.4 Main Processes

In this section, the main interactions between modules are graphically described through UML
sequence diagrams.

3.4.1 Interactions with the Context Information Manager

The sequence diagram in Figure 4 describes the different NGSI interactions an IoT Agent
makes with the Context Information Manager, specifically the Orion Context Broker, using as
an example an OMA Lightweight Machine to Machine (M2M) device.

If a device connects to the IoT Agent, configurations and device provisioning information must
be provided to the IoT Agent. Whenever a device is registered, the IoT Agent reads the device
entity information from the request or, if that information is not in the request, from the default
values for that type of device. When a request for data (lazy attribute) arrives to the Context
Broker, it forwards the request to the Context Provider of that entity, in this case the IoT Agent.
The IoT Agent will in turn ask the device for the information needed, transform that information
to a NGSI format and return it to the Context Broker.

The latter will forward the response in a transparent way to the caller. Commands are modelled
as updates over a lazy attribute. As in the case of the lazy attributes, updates over a command
will be forwarded by the Context Broker to the IoT Agent, who will interact with the device to
perform the requested action. Parameters for the command will be passed inside the command
value. Whenever a device proactively sends a message to the IoT Agent, it should transform
its data to the appropriate NGSI format and send it to the Context Broker as an update Context
request (iotagent-node-lib Architecture, n.d.).

3.4.2 Interactions with Security Components

The FIWARE security framework, which is made of Keyrock IdM, Wilma PEP and AuthZForce
PDP, enables controlled and secure access to platform resources (Peter Salhofer, 2020). In-
stead of allowing direct access to a sensitive service, a client application interacts with the proxy
(see Figure 5). The proxy checks authentication with the IdM and forwards the request to the
actual resource server, (called “Back-end Apps”) if security constraints are met.

In this scenario (called Level 1 security in FIWARE) only the authentication is checked, but it is
not tested, whether the application is allowed to perform the current action. In this framework,
there are two options to deploy authorisation:

• Application layer security (Level 1 Security);

• Platform layer security (Level 2 or Level 3 Security).

In the first case, authorisation decisions are made as part of the application logic. Alternatively,
the FIWARE platform supports authentication based on so called permissions, taking security
related decisions out of the application logic and it performs them on the platform layer. In this
scenario, the PEP, after having checked the validity of the access-token with the IdM, makes
a consecutive request to the PDP providing the current account user’s roles and the request
details. The PDP checks this information with its security policies and decides whether access
should be granted or not.

Deliverable D5.1 doi:10.5281/zenodo.5537587 28 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Figure 4: NGSI interactions of an IoT Agent with the context broker (iotagent-node-lib Architecture, n.d.).

In the case of Level 2 Security, when defining a permission which is always part of a specific
role, through the IdM user interface simply a URL and a http verb (GET, POST, PUT, etc.) are
provided (that should be granted to all users belonging to the corresponding role), while the
corresponding policy in XACML is created automatically. The Level 3 Security allows users to
write custom rules using XML.

3.4.3 Interactions through the Message Broker

The Message Broker implements the publish/subscribe messaging pattern. In this message
distribution pattern, the producer of each message publishes it to a topic, and multiple mes-
sage consumers subscribe to topics, which they want to receive messages from. A message
topic provides a lightweight mechanism to broadcast asynchronous event notifications, and
endpoints that allow software components to connect to the topic in order to send and receive
those messages. The messages published to a topic are then distributed to those applications
which are subscribed to it.

Deliverable D5.1 doi:10.5281/zenodo.5537587 29 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Figure 5: Authentication Level 1 Security.

Figure 6: Platform Level Authorisation.

Deliverable D5.1 doi:10.5281/zenodo.5537587 30 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Figure 7: Message Broker: publish/subscribe pattern.

3.5 Mapping Modules-Requirements

In Table 3 each architectural module is mapped to the functional requirements it should meet.

Table 3: Mapping Modules-Requirements.

ID Category Description C
on

te
xt

In
fo

rm
at

io
n

M
an

ag
er

Io
T

A
ge

nt

C
us

to
m

N
G

S
IA

ge
nt

M
es

sa
ge

B
ro

ke
r

R
E

S
T/

M
Q

TT
A

P
I

Id
en

tit
y

M
an

ag
er

E
nf

or
ce

m
en

tP
oi

nt

Po
lic

y
D

ec
is

io
n

Po
in

t

S
ec

ur
ity

R
ea

so
ni

ng
E

ng
in

e

H
is

to
ri

ca
lD

at
a

S
to

ra
ge

O
pe

n
D

at
a

In
te

rf
ac

e

C
ha

rt
s/

K
P

Is
U

se
r

In
te

rf
ac

e

FR
01

Data Ac-
quisition

The platform shall have
an interface to the field
instruments in order to
retrieve measurement
data from the field.

x x x x

FR
02

Data Ac-
quisition

Data from electric equip-
ment and field devices
shall be acquired directly
from the apparatuses or
indirectly from SCADA
and/or other data acqui-
sition systems.

x x x x

Deliverable D5.1 doi:10.5281/zenodo.5537587 31 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

ID Category Description C
on

te
xt

In
fo

rm
at

io
n

M
an

ag
er

Io
T

A
ge

nt

C
us

to
m

N
G

S
IA

ge
nt

M
es

sa
ge

B
ro

ke
r

R
E

S
T/

M
Q

TT
A

P
I

Id
en

tit
y

M
an

ag
er

E
nf

or
ce

m
en

tP
oi

nt

Po
lic

y
D

ec
is

io
n

Po
in

t

S
ec

ur
ity

R
ea

so
ni

ng
E

ng
in

e

H
is

to
ri

ca
lD

at
a

S
to

ra
ge

O
pe

n
D

at
a

In
te

rf
ac

e

C
ha

rt
s/

K
P

Is
U

se
r

In
te

rf
ac

e

FR
03

Seamless
Integration

The platform shall be
able to use a uniform
language in order to al-
low the seamless and
transparent integration of
electric equipment and
field devices, regardless
of the protocol or data
format used.

x x x

FR
04

Data Acqui-
sition

The platform shall be
able to receive real-time
measurements from
smart meters, monitoring
devices, and automatic
reading meters.

x x x x

FR
05

Data Pro-
cessing

When low latency is
requested, the platform
shall be able to per-
form real-time message
processing in-stream.

x

FR
06

Data Pro-
cessing

The platform shall be
able to support the rec-
onciliation and harmoni-
sation of the monitored
data to be provided as in-
put to the HYPERRIDE
energy services accord-
ing to the interoperability
data model schema.

x

FR
07

Commands/
Setpoints
Forwarding

The platform shall pro-
vide an interface for the
transmission of com-
mands/setpoints to the
electrical equipment for
the safe and reliable
operation of the grid.

x x x x

FR
08

Data Persis-
tence

The platform shall pro-
vide short to mid-term
persistence to the col-
lected data.

x

FR
09

Data Persis-
tence

The platform shall be
able to provide long term
persistence to the col-
lected data.

x

Deliverable D5.1 doi:10.5281/zenodo.5537587 32 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

ID Category Description C
on

te
xt

In
fo

rm
at

io
n

M
an

ag
er

Io
T

A
ge

nt

C
us

to
m

N
G

S
IA

ge
nt

M
es

sa
ge

B
ro

ke
r

R
E

S
T/

M
Q

TT
A

P
I

Id
en

tit
y

M
an

ag
er

E
nf

or
ce

m
en

tP
oi

nt

Po
lic

y
D

ec
is

io
n

Po
in

t

S
ec

ur
ity

R
ea

so
ni

ng
E

ng
in

e

H
is

to
ri

ca
lD

at
a

S
to

ra
ge

O
pe

n
D

at
a

In
te

rf
ac

e

C
ha

rt
s/

K
P

Is
U

se
r

In
te

rf
ac

e

FR
10

Data Usage The platform shall pro-
vide an interface to ac-
cess historical monitor-
ing data.

x x

FR
11

Data Acqui-
sition

The platform shall pro-
vide an interface for up-
loading open datasets in
different file formats, e.g.,
CSV, XLS, JSON, PDF,
etc.)

x

FR
12

Data Acqui-
sition

The platform shall sup-
port different types of
datasets (historical, live,
etc.).

x x

FR
13

Data Persis-
tence

The platform shall store
open datasets in a file
store.

x

FR
14

Data Persis-
tence

A tabular dataset shall be
stored in a datastore re-
specting the structure of
the dataset records.

x

FR
15

Data Access The platform shall pro-
vide an interface for ac-
cessing open datasets.

x

FR
16

Data Search The platform shall en-
able users to search for
datasets with various fil-
ters.

x

FR
16

Data Search The platform shall en-
able users to search for
datasets with various fil-
ters.

x

FR
17

Data Access The platform shall control
access to datasets on
the basis of access rights
set by the data owner.

x x x

FR
18

Data Update The platform shall in-
form users for updates
on datasets they use.

x x

FR
19

Data Visuali-
sation

The platform shall per-
mit to visualise an open
dataset.

x x x

Deliverable D5.1 doi:10.5281/zenodo.5537587 33 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

ID Category Description C
on

te
xt

In
fo

rm
at

io
n

M
an

ag
er

Io
T

A
ge

nt

C
us

to
m

N
G

S
IA

ge
nt

M
es

sa
ge

B
ro

ke
r

R
E

S
T/

M
Q

TT
A

P
I

Id
en

tit
y

M
an

ag
er

E
nf

or
ce

m
en

tP
oi

nt

Po
lic

y
D

ec
is

io
n

Po
in

t

S
ec

ur
ity

R
ea

so
ni

ng
E

ng
in

e

H
is

to
ri

ca
lD

at
a

S
to

ra
ge

O
pe

n
D

at
a

In
te

rf
ac

e

C
ha

rt
s/

K
P

Is
U

se
r

In
te

rf
ac

e

FR
20

Data Update A user having the right to
view a dataset can opt to
be notified of changes.

x x

FR
21

Data Export The platform shall al-
low to export an open
dataset in different file
formats (JSON, XLS,
CSV).

x x

FR
22

Data Acqui-
sition

The platform shall sup-
port the collection of in-
formation about detected
anomalies that identify
problems with devices or
assets.

x x x x

FR
23

Data Acqui-
sition

The platform shall sup-
port the collection of
information about intru-
sions detected in the net-
work.

x x x x

FR
24

Anomalies
Processing

The platform shall iden-
tify the root cause of
anomalies due to either
faults or cyber-attacks.

x x

FR
25

Anomalies
Processing

When root cause is
identified, the platform
shall suggest counter-
measures.

x x

FR
26

Anomalies
Processing

The platform shall sup-
port the collection of in-
formation about mainte-
nance interventions in
the grid.

x x x x

FR
27

Data Acqui-
sition

The platform shall sup-
port the collection of
information about the
weather forecast from a
third-party provider.

x x

FR
28

Data Acqui-
sition

The platform shall sup-
port the collection of
information about the
production/consumption
forecast.

x x x x

Deliverable D5.1 doi:10.5281/zenodo.5537587 34 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

ID Category Description C
on

te
xt

In
fo

rm
at

io
n

M
an

ag
er

Io
T

A
ge

nt

C
us

to
m

N
G

S
IA

ge
nt

M
es

sa
ge

B
ro

ke
r

R
E

S
T/

M
Q

TT
A

P
I

Id
en

tit
y

M
an

ag
er

E
nf

or
ce

m
en

tP
oi

nt

Po
lic

y
D

ec
is

io
n

Po
in

t

S
ec

ur
ity

R
ea

so
ni

ng
E

ng
in

e

H
is

to
ri

ca
lD

at
a

S
to

ra
ge

O
pe

n
D

at
a

In
te

rf
ac

e

C
ha

rt
s/

K
P

Is
U

se
r

In
te

rf
ac

e

FR
29

Data Persis-
tence

The platform shall be
able to store component
reliability information for
all the interested parties
to access at any time.

x

FR
30

Data Acqui-
sition

The platform shall pro-
vide an interface for col-
lecting component relia-
bility information.

x

FR
31

Registration The platform shall allow
users (individual/ ser-
vices/ applications) to
register for an account.

x

FR
32

Authentica-
tion

The platform shall iden-
tify users (individual/ ser-
vices/ applications) be-
fore allowing them to use
its functions.

x x

FR
33

Authentica-
tion

The platform shall verify
the identity of users (in-
dividual/ services/ appli-
cations) before allowing
them to use its functions.

x x

FR
34

Authentic-
tion

The platform shall al-
low to assign access
privileges to authenti-
cated users (individual/
services/ applications).

x x x

FR
35

Authentica-
tion

The platform shall al-
low to revoke access
privileges to users (indi-
vidual/ services/ applica-
tions).

x x

FR
36

Authentica-
tion

The platform shall check
user’s access privileges
before allowing them to
use protected resources.

x x

FR
37

Data In-
tegrity

The platform shall pre-
vent the intentional cor-
ruption of data/context
information collected via
unauthorised creation,
modification, or deletion.

x

Deliverable D5.1 doi:10.5281/zenodo.5537587 35 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

ID Category Description C
on

te
xt

In
fo

rm
at

io
n

M
an

ag
er

Io
T

A
ge

nt

C
us

to
m

N
G

S
IA

ge
nt

M
es

sa
ge

B
ro

ke
r

R
E

S
T/

M
Q

TT
A

P
I

Id
en

tit
y

M
an

ag
er

E
nf

or
ce

m
en

tP
oi

nt

Po
lic

y
D

ec
is

io
n

Po
in

t

S
ec

ur
ity

R
ea

so
ni

ng
E

ng
in

e

H
is

to
ri

ca
lD

at
a

S
to

ra
ge

O
pe

n
D

at
a

In
te

rf
ac

e

C
ha

rt
s/

K
P

Is
U

se
r

In
te

rf
ac

e

FR
38

Authentication The platform shall detect
attempted accesses that
fail identification require-
ments.

x

FR
39

Authentication The platform shall de-
tect attempted accesses
that fail authentication re-
quirements.

x

FR
40

Authorisation The platform shall detect
attempted accesses that
fail authorisation require-
ments.

x

FR
41

Data Access Data shall only be ac-
cessible by authenticated
and authorised entities.

x x x

FR
42

Data Pro-
cessing

The platform shall allow
to configure a set of met-
rics/KPIs based on the
historical data.

x

FR
43

Data Pro-
cessing

The platform shall com-
pute the metrics/KPIs
and find the values re-
quired for the calculation.

x

FR
44

Data Visuali-
sation

The platform shall dis-
play metrics/KPIs results.

x

FR
45

Data Visuali-
sation

The platform shall be
able to display customis-
able time series.

x

FR
46

Data Acqui-
sition

The platform shall in-
clude a UI for keeping
track of human interven-
tions in the grid.

x

FR
47

Data Persis-
tence

The platform shall record
any human intervention
in the grid.

x

FR
48

Message
Forwarding

The platform shall be
able to forward a mes-
sage from the sender to
the recipient.

x x x x

Deliverable D5.1 doi:10.5281/zenodo.5537587 36 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

3.6 HYPERRIDE Services using the Open ICT Platform

This section provides an overview of the services that will be implemented in the context of
HYPERRIDE and that will made use of data acquired through the Open ICT Platform (see
Figure 8).

Figure 8: HYPERRIDE services using the Open ICT Platform.

3.6.1 Optimal Control

The Optimal Control service that is being deployed in the HYPERRIDE ICT platform is based on
the OPF algorithm for AC/DC grids, developed in Task T4.5 “Monitoring and control automation
architecture for Hybrid AC/DC Distribution Network”.

OPF is a grid management technique that consists of determining the most optimal set of
variables in an electrical network to achieve the fulfilment of pre-determined criteria related to
power flow results. The variables considered in the adjustment can be, for example, the power
set points of Distributed Generators (DG) or power converters, the control of transformers tap-
changers or the position (open - close) of switching devices. The algorithm considers objective
criteria that are pre-defined, as the minimisation of power losses and the efficient exploitation
of renewable energy sources. The specific OPF that is developed within the HYPERRIDE
project focuses on the management of AC/DC distribution grids, hence it includes the accurate
modelling of components and control systems for AC/DC power converters as well as loads
and distributed generators in the DC sub-section of the network.

Inputs and Sources

The Optimal Control solution will be implemented within the HYPERRIDE ICT platform as
middleware component, interconnected to other software components, using the defined data
model for information exchange, and independent from specific grid topologies. The necessary
inputs for the execution of the algorithm consists of static and dynamic data:

• Static Data: consisting of grid topology (types of nodes and lines, location and position of
switching devices, location of AC/DC converters) and grid parameters (impedances/ad-
mittances of the lines, technical data of transformers and power converters). The source

Deliverable D5.1 doi:10.5281/zenodo.5537587 37 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

of these data corresponds, in the HYPERRIDE platform, to the Orion Context Information
Management or the Historical Data Storage component.

• Dynamic Data: consisting of the actual values of power injections at the nodes, the
voltages at the nodes, and the current and power flows along the electrical lines. The
State Estimation component, as middleware in the HYPERRIDE platform, constitutes the
source of these data.

Outputs and Destinations

The output of the OPF algorithm consists of the computed optimal parameters that satisfy grid
constraints and optimise the energy management. In the implemented algorithm specifically
tailored for AC/DC distribution grids, the outcomes are power setpoints for AC/DC converters.
The destination of the computed commands are the actuators installed in the fields of HYPER-
RIDE pilot sites, reached via the software components Orion Context Information Manager and
specific IoT Agent, which implements the used communication protocol.

3.6.2 State Estimation

State estimation is a technique used to acquire full knowledge of the power system in real-
time conditions. Specifically, it consists of processing the available measurements, in order
to provide an optimal estimate of the current operating state. Usually, the states are consti-
tuted by voltage phasors at each system bus for a given point in time. Consequently, all the
other electrical quantities of the network are computed via the fundamental electro-technical
functions.

In case of hybrid AC/DC grids, the main obstacle is constituted by the exchange of power flow
values among the AC and DC sub-portions of the network (i.e., the modelling of losses and
operating conditions and AC/DC converters). Two approaches are identified: in the first case,
the two-steps algorithm initially solves the state estimations separately in AC and DC grid sub-
portions and, then, it combines the outcomes to achieve an accurate estimation of the power
network states. The second method relies on data provided by Phasor Measurement Units
(PMUs) to linearly model the state estimation problem and solve it in a single iteration.

In the context of HYPERRIDE ICT platform, the State Estimation solution will be integrated with
additional grid services, as the Optimal Control and Service Restoration middleware, which are
being developed in the Tasks T4.5 “Monitoring and control automation architecture for Hybrid
AC/DC Distribution Network”.

Inputs and Sources

As well as the Optimal Control, also the inputs of the State Estimation are divided among static
and dynamic data:

• Static Data: the provision of these data occurs only once, when a new network is intercon-
nected. They consist of grid topology (types of nodes and lines, location of AC/DC con-
verters), grid parameters (impedances/admittances of the lines, technical data of trans-
formers and power converters), and the accuracies of measurement devices. In case of
strict necessity, due to an unfavourable condition of sensing infrastructures, also forecasts
uncertainties are included. The source of these data corresponds, in the HYPERRIDE

Deliverable D5.1 doi:10.5281/zenodo.5537587 38 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

platform, to the Orion Context Information Management, which stores according to the
standardised data models, or the Historical Data Storage component.

• Dynamic Data: corresponding to the measurements provided from the field devices (trans-
ducers, current and voltage transformers, smart meters) via the IoT Agent and adapted to
NGSI to interface FIWARE components. The measurements consist of current and power
injections at the nodes, voltages at the nodes, the current and power flows along the elec-
trical lines. Eventually, forecasted power consumed by loads or injected by distributed
generators (from forecasting load/generation profiles) may be included as measurements.
The source of these data corresponds to the Historical Data Storage component.

Outputs and Destinations

The outputs of State Estimation solution are the states (quantification of electrical network vari-
ables, e.g., nodes voltages or branch currents) computed at each node with the indication of
their computed accuracies. Consequently, the remaining operating conditions of the power grid
are computed from the aforementioned states. The configuration of the HYPERRIDE ICT plat-
form foresees the interconnections of several grid services to achieve their primary functions:
the outcomes of State Estimation are directly used by the Optimal Control and the Service
Restoration middleware.

3.6.3 Service Restoration

The occurrence of faults, as short-circuit, in the electrical networks requires fast and efficient
countermeasures, to reduce the dangerous impacts (for users and devices) and to return
quickly to necessary operating conditions. Particularly, after the localisation and isolation of
a faulted area, the distribution grid needs to be reconfigured in order to re-energise the dis-
connected nodes; this procedure relates to the Service Restoration solution. In case of AC/DC
distribution grids, the additional adjustment of AC/DC power converters setpoints constitutes a
fundamental operation in improving the power flow.

The Service Restoration solution, developed and used within HYPERRIDE tasks, is a middle-
ware software component particularly tailored to the fault management for AC/DC distribution
grids, at Medium Voltage level. The re-energising of disconnected nodes relies on the recon-
figuration of grid topology (by closing normally open tie-switches) and the adjustment of AC/DC
converter setpoints. The solution makes use of two additional HYPERRIDE grid services:
the State Estimation and the Optimal Control solutions (described in the paragraphs above).
Moreover, the Service Restoration solution considers as reconfiguration criteria the number of
restored loads, their criticality, the power losses, and the priority of tele-controlled switches;
the solution is computed by implementing a Multiple-Criteria Decision Analysis (MCDA) ap-
proach.

Inputs and Sources

Similar to other HYPERRIDE grid services the Service Restoration solution is executed by
considering two different groups of input data: static and dynamic:

• Static Data: as for the State Estimation solution, the provision of these data occurs only
once, when a new network is interconnected. They consist of grid topology (types of
nodes and lines, location and type of switching devices and location of AC/DC converters),

Deliverable D5.1 doi:10.5281/zenodo.5537587 39 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

grid parameters (impedances/admittances of the lines, technical data of transformers and
power converters, criticality and technical data of loads and distributed generators), and
the accuracies of measurement devices and forecasts. The source of these data cor-
responds, in the HYPERRIDE platform, to the Orion Context Information Management,
which stores according to the standardised data models, or the Historical Data Storage
component.

• Dynamic Data: They are corresponding to the measurements provided from the field de-
vices (transducers, current and voltage transformers, smart meters) and the grid statuses
via the IoT Agent, and are adapted to NGSI to interface FIWARE components. The mea-
surements consist of current and power injections at the nodes, voltages at the nodes,
and the current and power flows along the electrical lines. Eventually, forecasted power
consumed by loads or injected by distributed generators (from forecasting load/generation
profiles) are included as measurements. Additionally, the positions of the switching de-
vices and the tripping conditions are necessary data to execute the Service Restoration
solution. The source of these data corresponds to the Historical Data Storage component.

Outputs and Destinations

The destinations of Service Restoration outcomes are different, at the various steps of the
service. The algorithm structures candidate topologies for the network reconfiguration, which
are then optimised by the adjustment of AC/DC converter setpoints: this is carried out via
the execution of State Estimation and the OPF algorithms. The outcomes of the OPF service
constitute then an internal input to the Service Restoration.

The final outcome of the Service Restoration corresponds to the operating (opening - closing)
commands for switching devices, and the setpoints of AC/DC power converters. The desti-
nations of these data are the actuators (protection relays and converter controllers) installed
in the field of HYPERRIDE pilot sites, reached via the software components Orion Context
Information Manager and a specific IoT Agent, which implements the used communication pro-
tocol.

3.6.4 Open Reliability Information

The goal of the Open Reliability Information system is to provide a common platform for storing
and sharing component reliability information. The shared data will consist of system and
subsystem reliability and maintenance statistics, information on system structure and operation
conditions as well as estimations on data quality. The data will be used in quantitative reliability
and availability assessments.

The input for this database (see Figure 9) comes on the one side from literature and prod-
uct specification, on the other side from data collections of existing real components (de-
vices).

The Open Reliability Information system can benefit from observed information from real life by
interpreting fault tracking, logbooks, and observations.

On the other side the information system can provide statistics on probabilities of failures on
system components under different environmental conditions.

The statistics can be evaluated by a single component instance or over a larger group of similar
components, either provided by the own organisation/company or shared between many co-

Deliverable D5.1 doi:10.5281/zenodo.5537587 40 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Figure 9: Context of Open Reliability Database.

operating organisations. This possibility allows to provide statistics on a bigger set of samples
while respecting privacy of individual records.

Inputs and Sources

Inputs can be the information on the stability and reliability of the system, coming from fault
tracking or logging. Examples of such information are:

• Identification of the system or subsystem

• Environmental conditions (temperature, radiation, electric field intensity, . . .)

• Failure mode

• Failure costs

• Time of interruption

• Maintenance activities

• Changed spare parts

• Running time of component.

It is a necessary precondition, that both sides are reaching an agreement on the semantic
of the exchanged information and both sides have the same picture on the structure of the
systems and subsystems. The system relies on the methods of international standard ISO
14224:2016 (“Collection and exchange of reliability and maintenance data for equipment‘”). It
is possible to support also an interface for configuring the reliability information system by a
REST interface.

Outputs and Destinations

The outcome of the Open Reliability Information system would be the Probability Density Func-
tion (PDF) on a single component or on a group of components.

Deliverable D5.1 doi:10.5281/zenodo.5537587 41 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

3.6.5 EV Smart Charging

Electric Vehicles (EV) smart charging services are provided to increase grid operation effi-
ciency. Through a real-time monitoring system and a remote management system, the EV
smart charging stations can be used to provide energy flexibility to the electricity grid, so as to
avoid reverse power flow due to the distributed renewable energy plants.

Inputs and Sources

The EV smart charging service will receive inputs from the optimal control service to modu-
late charging station power output during charging sessions, as well as start or stop charging
sessions.

Outputs and Destinations

The EV smart charging service will provide outputs to the state estimation service, delivering
real-time data collected from the charging stations and EV in order to assess electricity grid
conditions and forecast potential energy flexibility provisioning. In Appendix B. Services Imple-
mented in HYPERRIDE, details are given on the EMOT EV Smart Charging System that will
be integrated in the HYPERRIDE Open ICT Platform in the Terni pilot site.

3.7 Next Steps

The adopted approach to the requirement analysis is an “iterative” process, rather than a “wa-
terfall” one. For this reason, the work about the architecture will continue also beyond the
submission of the current deliverable, to further refine and optimise the architecture with the
emerging needs inside the project. This report, in this perspective, is the first consolidated
starting point for the actual implementation of the platform which will take into account the
complete list of requirements which will emerge also beyond the submission of this report it-
self.

The work started from Deliverable D2.2 use cases to start eliciting the requirements presented,
limited to the ICT specific needs. The evolution of the use cases will be taken into account, for
a possible further refinement of the ICT requirements as well. At the same time, the “HYPER-
RIDE services” presented here will be integrated and evolved according to the needs coming
from the pilots. The platform has been designed as generic as possible right to avoid limita-
tions and to be ready to integrate theoretically anything which may emerge as necessary in the
course of the project.

In order to further refine and specialise on the ICT requirements, a series of calls will be ar-
ranged with the main stakeholders:

• the penetration test team, for the specifics of the cyber-security aspects;

• the REASENS team, for its support as reported in Deliverable D2.3 (Stöckl et al., 2021)
to cascading-effect mitigation tool developed in WP4;

• the pilot leaders, to follow the ongoing refinement of the specific use cases.

Once the requirements of the pilots are clarified, new non-functional requirements for the ICT
part may be identified and reported as contribution to D6-7-8.1 deliverables. The specialisation

Deliverable D5.1 doi:10.5281/zenodo.5537587 42 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

of the “HYPERRIDE Services” will be studied in WP4 and integrated in WP5. The possible
updates on the architecture and all details on components and processes will be provided in
Deliverable D5.6 accompanying report, in which the final specifications will be developed into a
first prototype, while instructions for the deployment will be provided in Deliverable D5.8 accom-
panying report. Moreover, the specific needs of hybrid AC/DC grids, in terms of cyber-security
and mitigation of cascading effects, will be addressed in the next deliverables pertaining to Task
5.3, starting from Deliverable D5.3, due at the end of project month 24.

Deliverable D5.1 doi:10.5281/zenodo.5537587 43 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

4 Conclusions
The HYPERRIDE project envisions the field implementation of DC and hybrid AC/DC grids
by identifying and providing solutions to overcome barriers for a successful roll-out of new
infrastructure concepts throughout Europe.

In this vision, an Open ICT Platform has been conceived for the scalable and seamless inte-
gration and management of devices and electricity equipment and collection of data that are
supporting near real-time observability and optimisation of the operation of modular and re-
silient hybrid AC/DC grids.

This document gives a brief introduction of the methodologies adopted to produce the results.
The results of the elicitation and the analysis of functional and non-functional requirements at
the basis of the HYPERRIDE Open ICT Platform have been reported. Functional and non-
functional requirements have been deduced starting from a shared knowledge of the project
goals and pilot expectations formalised in Deliverable D2.2 and coming from the answers WP
leaders and pilot leaders had given in a survey that had been properly prepared to collect
expectations in term of functionalities, standards, data models, constraints, special technolo-
gies/tools needed, and data necessary for the business processes.

A specifications review and retrospective activities that will be conducted in the next phases of
the project will bring out new and refined requirements that will be reported in the accompanying
report of Deliverable D5.6.

The core part of the report relates to the description of the Open ICT Platform architecture: it
provides a general overview of the whole architecture and the high-level description of each
functional module that has been identified. A layered architectural pattern has been adopted to
provide a general view of the high-level HYPERRIDE Open ICT Platform:

• The Presentation Layer is the frontend layer of the architecture and is responsible for han-
dling all user interface and browser communication logic. Presentation layer components
will implement the functionalities required to allow users to interact with the system.

• The Knowledge Layer represents the underlying domain, mostly consisting of context
information and data.

• The Acquisition and Interoperability Layer ’s main role is to capture data from different
devices and, if requested, to convert those data in standardised context information.

The main interactions between modules have been illustrated through sequence and activity
diagrams. Moreover, an overview of those energy services has been provided that will be
evolved in the context of HYPERRIDE for the safe and reliable operation of hybrid AC/DC grids
and that will make use of data acquired through the Open ICT Platform.

The specifics of the cyber-security aspects will be provided in Deliverable D5.3. Possible up-
dates on the architecture and all details on components and processes will be provided in the
D5.6 accompanying report, while instructions for their deployment will be provided in Deliver-
able D5.8 accompanying report.

Deliverable D5.1 doi:10.5281/zenodo.5537587 44 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

References
Bennaceur, A., Tun, T., Yu, Y., & Nuseibeh, B. (2018). Requirements engineering.

CEN-CENELEC-ETSI Smart Grid Coordination Group. (2012). Smart Grid Reference Archi-
tecture. Retrieved from https://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1
_reference_architecture.pdf

CKAN code architecture. (2018). Retrieved from https://docs.ckan.org/en/2.9/contents.html

FIWARE. (2021a). Identity Manager - KeyRock. Retrieved from https://fiware-idm
.readthedocs.io/en/latest/index.html

FIWARE. (2021b). Pep proxy - wilma. Retrieved from https://fiware-pep-proxy.readthedocs
.io/en/latest/

FIWARE. (2021c). Welcome to authzforce’s official documentation. Retrieved from https://
authzforce-ce-fiware.readthedocs.io/en/latest/

FIWARE catalogue. (n.d.). Retrieved from https://www.fiware.org/developers/catalogue/

FIWARE-NGSI v2 Specification. (n.d.). Retrieved from http://fiware.github.io/specifications/
ngsiv2/stable/

Future Internet PPP: Led by industry, driven by users Addressing the challenge of Internet
development in Europe. (n.d.). Retrieved from https://www.fi-ppp.eu/

iotagent-node-lib Architecture. (n.d.). Retrieved from https://iotagent-node-lib.readthedocs
.io/en/latest/architecture/index.html

Kazmi, J., Strasser, T. I., Smith, P., Stöckl, J., Jambrich, G., Dognini, A., . . . Aghaie, H.
(2021). Use case description, specification and implementation roadmap report. Deliverable
D2.2, HYPERRIDE Consortium. doi:10.5281/zenodo.4772166

Lucassen, & Dalpiaz. (2016). The use and effectiveness of user stories in practice. Require-
ments Engineering: Foundation for Software Quality .

Mavin, H., Wilkinson, & Novak. (2009). Easy approach to requirements syn-
tax (ears). 17th IEEE International Requirements Engineering Conference, 317–322.
doi:10.1109/RE.2009.9

National Institute of Standards and Technology. (n.d.). Retrieved from https://www.nist.gov/

NGSI Context Management - Approved Version 1.0. (2012). Retrieved from
http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-NGSI
_Context_Management-V1_0-20120529-A.pdf.

OASIS. (2021). extensible access control markup language (xacml) version 3.0. Retrieved
from http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html

Peter Salhofer, P. D. (2020). Evaluating the fiware platform. In 53rd hawaii international
conference on system sciences. doi:10.24251/HICSS.2020.809

Stöckl, J., Jambrich, G., Milnera, M., Kapeller, J., Fuchs, N., Smith, P., . . . Norrga, S. (2021).
Enabling technologies requirements and specification report. Deliverable D2.3, HYPERRIDE
Consortium. doi:10.5281/zenodo.4772129

Valenti, M., & Graditi, G. (2020). Le smart grid per un futuro energetico sostenibile e sicuro.
doi:10.12910/EAI2020-043

Deliverable D5.1 doi:10.5281/zenodo.5537587 45 of 51

https://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf
https://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf
https://docs.ckan.org/en/2.9/contents.html
https://fiware-idm.readthedocs.io/en/latest/index.html
https://fiware-idm.readthedocs.io/en/latest/index.html
https://fiware-pep-proxy.readthedocs.io/en/latest/
https://fiware-pep-proxy.readthedocs.io/en/latest/
https://authzforce-ce-fiware.readthedocs.io/en/latest/
https://authzforce-ce-fiware.readthedocs.io/en/latest/
https://www.fiware.org/developers/catalogue/
http://fiware.github.io/specifications/ngsiv2/stable/
http://fiware.github.io/specifications/ngsiv2/stable/
https://www.fi-ppp.eu/
https://iotagent-node-lib.readthedocs.io/en/latest/architecture/index.html
https://iotagent-node-lib.readthedocs.io/en/latest/architecture/index.html
https://doi.org/10.5281/zenodo.4772166
https://doi.org/10.1109/RE.2009.9
https://www.nist.gov/
http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf.
http://www.openmobilealliance.org/release/NGSI/V1_0-20120529-A/OMA-TS-NGSI_Context_Management-V1_0-20120529-A.pdf.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.24251/HICSS.2020.809
https://doi.org/10.5281/zenodo.4772129
https://doi.org/10.12910/EAI2020-043
https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Appendix A. Non-Functional Req. Minimal Checklist
An example of a minimal checklist for the elicitation of non-functional requirements is reported
below:

• Security

– Login requirements - access levels, CRUD levels.

– Password requirements - length, special characters, expiry, recycling policies.

– Inactivity timeouts – duration’s, actions.

• Audit

– Audited elements – what business elements will be audited?

– Audited fields – which data fields will be audited?

– Audit file characteristics - before image, after image, user and time stamp, etc.

• Performance

– Response times - application loading, screen open and refresh times, etc.

– Processing times – functions, calculations, imports, exports.

– Query and Reporting times – initial loads and subsequent loads.

• Capacity

– Throughput – how many transactions per hour does the system need to be able to
handle?

– Storage – how much data does the system need to be able to store?

– Year-on-year growth requirements.

• Availability

– Hours of operation – when is it available? Consider weekends, holidays, mainte-
nance times, etc

– Locations of operation – where should it be available from, what are the connection
requirements?

• Reliability

– Mean Time Between Failures – What is the acceptable threshold for down-time?

– Mean Time To Recovery – if broken, how much time is available to get the system
back up again?

• Integrity

– Fault trapping (I/O) – how to handle electronic interface failures, etc.

– Bad data trapping – data imports, flag-and-continue or stop the import policies, etc.

– Data integrity – referential integrity in database tables and interfaces.

– Image compression and decompression standards.

• Recovery
Deliverable D5.1 doi:10.5281/zenodo.5537587 46 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

– Recovery process – how do recoveries work, what is the process?

– Recovery time scales – how quickly should a recovery take to perform?

– Backup frequencies – how often is the transaction data, set-up data, and system
(code) backed-up?

– Backup generations - what are the requirements for restoring to previous instance(s)?

• Compatibility

– Compatibility with shared applications – What other systems does it need to talk to?

– Compatibility with 3rd party applications – What other systems does it have to live
with amicably?

– Compatibility on different operating systems – What does it have to be able to run
on?

– Compatibility on different platforms – What are the hardware platforms it needs to
work on?

• Maintainability

– Conformance to architecture standards – What are the standards it needs to conform
to or have exclusions from?

– Conformance to design standards – What design standards must be adhered to or
exclusions created?

– Conformance to coding standards – What coding standards must be adhered to or
exclusions created?

• Usability

– Look and feel standards - screen element density, layout and flow, colours, UI metaphors,
keyboard shortcuts

– Internationalisation / localisation requirements – languages, spellings, keyboards,
paper sizes, etc

• Documentation

– Required documentation items and audiences for each item.

Deliverable D5.1 doi:10.5281/zenodo.5537587 47 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Appendix B. Services Implemented in HYPERRIDE
This appendix provides details on the automation services implemented in the context of the
HYPERRIDE project to provide innovative solutions enabling resilient autonomous self-healing
as well as protection of hybrid AC/DC grids, while improving network observability through real-
time system awareness.

B.1 Open Reliability Information

The services to the reliability database can be accessed by a REST interface. The definition of
the interface is available as Swagger interface4. The following types of services are currently
available:

• Organisation administration: defining an update companies and organisation, participat-
ing in the open reliability database.

• User administration: administration of users for each organisation.

• Taxonomy and meta catalogue administration: defining and updating the meta catalogue,
defining taxonomies

• Equipment class administration: defining the characteristic of an equipment class (at-
tributes, rules, bounding borders, etc.)

• Location definition: definition of the system, where parts are installed.

• Equipment definition and maintenance: definition of components and associating them to
equipment classes and installation points.

• Inserting of maintenance activities and failure events for equipment components.

• Retrieving statistics.

The main focus for interfacing will be the insertion of maintenance and failure events. Detailed
definitions will follow in a later phase.

4https://service.ait.ac.at/aries_service/swagger/ (username/password can be provided upon request)
Deliverable D5.1 doi:10.5281/zenodo.5537587 48 of 51

https://service.ait.ac.at/aries_service/swagger/
https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

Appendix C. EV Smart Charging System
EMOT EV smart charging system for HYPERRIDE project is hosted into a Virtual Private Server
(VPS) whose details are:

• CPU: 2 core 3.1 GHz;

• HDD: 50 GB;

• RAM: 4 GB;

• S.O.: Ubuntu 16.04 LTS.

Into the VPS, run simultaneously EV Wrapper Server, OCPP server and API REST. The image
below describes the EMOT network topology, which is divided into three main networks:

• Green network, related to EMOT headquarters and charging stations;

• Red network, related to electric vehicles;

• Orange network, related to EMOT VPS.

Figure 10: EMOT network topology.

EMOT charging stations are exchanging data through a modem connected to a single-board
computer, a Raspberry Pi 3, with a CPU of quad-core ARM Cortex A53 1.2 GHz, a SD of 16 GB,
a RAM of 1 GB and a Raspbian Stretch 4.14 S.O.; charging station protocols are OCPP (appli-
cation protocol for communication between charging stations and EMOT central management
system) and websocket (computer communications protocol, providing full-duplex communi-
cation channels over a single TCP connection). EMOT OCPP server accepts communications

Deliverable D5.1 doi:10.5281/zenodo.5537587 49 of 51

https://doi.org/10.5281/zenodo.5537587

LC-SC3-2020

and data exchange only with the client program that is installed in the charging station computer.
OCPP server accepts the connection by the client only and exclusively if a valid authentication
key is used at the time of the request. Charging station data format is JSON and the sam-
pling rate is one second. Charging station data collected are: Charging Station ID, Charging
Station Electric Current Real-Time Value, Charging Station Voltage Real-Time Value, Socket
ID, Socket Status, Charging Session ID, Charging Session Start Time, Charging Session End
Time, Charging Session Energy Value, Charging session Cost Value. From the actuation point
of view, EMOT charging stations are designed to receive commands via EMOT API, to remotely
modify charging station power output or to start and stop a charging session.

Regarding EV monitoring, EMOT use an on-board diagnostic (OBD) device to retrieve data
from the EV; OBD is an IoT component, based on a Raspberry Pi 3 and Carberry; Carberry
represents the link between car electronics and Raspberry Pi, which allows the development
of end-user applications. OBD utilise a TCP/IP communication to a TCP/IP server. The net-
work connectivity of the OBD device is via data SIM (UMTS), thanks to a Raspberry module
that works as a modem, and the server is a python software; OBD protocol is MQTT and the
sampling rate is 5 seconds. The OBD connects to the diagnostic interface from which it is able
to extract the information from the electric vehicle control unit using the CAN-bus protocol. The
output data format of the OBD is an ASCII string; when the data is sent to the server, it is
reorganised into a wrapper, thus obtaining a grouping of the data in JSON format. EV data
collected are:

• Measure ID: unique identifier of a specific measurement;

• Vehicle ID: unique identifier of a specific EV;

• Brand: EV manufacturer name;

• Model: EV model name;

• Battery Power (kW): maximum EV charging power value;

• Battery Capacity (kWh): maximum EV battery energy capacity value;

• Connector Type: EV charging connector type name;

• Autonomy (km): real-time EV kilometers autonomy value;

• Odometer (km): real-time EV odometer value;

• State of Charge percentage: real-time EV State of Charge percentage value;

• Timestamp: record of the time of measurement event.

Deliverable D5.1 doi:10.5281/zenodo.5537587 50 of 51

https://doi.org/10.5281/zenodo.5537587

This project has received funding from the European Union's
Horizon 2020 research and innovation programme under
Grant Agreement No. 957788.

Consortium

Disclaimer

All information provided reflects the status of the HYPERRIDE project at the time of writing and may be
subject to change.

Neither the HYPERRIDE Consortium as a whole, nor any single party within the HYPERRIDE Consor-
tium warrant that the information contained in this document is capable of use, nor that the use of such
information is free from risk. Neither the HYPERRIDE Consortium as a whole, nor any single party within
the HYPERRIDE Consortium accepts any liability for loss or damage suffered by any person using the
information.

This document does not represent the opinion of the European Community, and the European Commu-
nity is not responsible for any use that might be made of its content.

Copyright Notice

© 2021 by the authors, the HYPERRIDE Consortium. This work is licensed under a
“CC BY 4.0” license.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

	Executive Summary
	Introduction
	Purpose and Scope of the Document
	Structure of the Document
	Intended Audience
	Relations to Other Activities

	Requirement Elicitation and Analysis
	Methodology
	Functional Requirements
	Non-Functional Requirements

	Overarching Architecture
	Methodology
	Overview
	Main Modules
	Main Processes
	Mapping Modules-Requirements
	HYPERRIDE Services using the Open ICT Platform
	Next Steps

	Conclusions
	References
	Appendix A. Non-Functional Requirement Minimal Checklist
	Appendix B. Services Implemented in HYPERRIDE
	B.1 Open Reliability Information

	Appendix C. EV Smart Charging System

