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Abstract— Trajectory tracking in the orientation space uti-
lizing unit quaternions yields non linear error dynamics as
opposed to Cartesian position. In this work, we study trajectory
tracking in the orientation space utilizing the most popular
quaternion error representations and angular velocity errors.
By selecting error functions carefully we show exponential con-
vergence in a region of attraction containing large initial errors.
We further show that under certain conditions frequently en-
countered in practice, the formulation respecting the geometric
characteristics of the quaternion manifold and its tangent space
yields linear tracking dynamics allowing us to guarantee a
desired tracking performance by gain selection without tuning.
Simulation and experimental results are provided.

I. INTRODUCTION
In many applications it is necessary for a control system

to follow a desired orientation trajectory. Such applications
involve the control of robotic manipulators [1], aerial and
space agents [2], [3] or underwater vehicles [4], [5]. In
the Cartesian position case this problem can be solved
by using appropriate feedback terms in the position and
velocity, generating linear system error dynamics. This is
not however the case in the orientation space. Orientation
space representations lie in the SO(3) group, which is a
three dimensional manifold. No minimal representations of
SO(3) exist, free of singularities or discontinuities [6].

A very popular representation of orientation in robotics
and control is the unit quaternion [7]. Unit quaternions
offer efficiency in calculation and a strong algebraic and
kinematics background [8]. Orientation representations using
unit quaternions are free of singularities but are not unique
by construct. In fact an orientation can be described by either
a unit quaternion or its negative. The uniqueness comes
by constraining the unit quaternion space. However, when
used to form the error between the current and the desired
orientation, this constraint can lead to undesired behaviours
known as unwinding [9], resulting in non-optimal paths. To
alleviate it, instead of constraining the current or desired
quaternion space, the error angle, in the equivalent angle axis
representation should be confined in the interval [−π, π).

As the inherent quaternion dynamics is not linear, control
systems in the orientation space are not linear in general.
Furthermore, the orientation error used in such controllers
must be defined in R3 in order to be compatible with the
angular velocity and acceleration. There are three popular
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orientation error definitions in R3 that have been proposed
for quaternion feedback. Initially an error inspired by the
angle axis representation is proposed in [10] and still used
in recent works [11]. In [12] the utilization of the vector
part of the quaternion error is proposed, and has been largely
adopted by the robotics and control community [13]–[15]. In
recent years, the usage of another quaternion error is gaining
popularity [16]–[20] that takes into account the logarithmic
mapping from the unit quaternion manifold to the tangent
space of angular velocity vectors [21], [22].

Moreover, there exist two different angular velocity error
formulations. Earlier works use the error formed from the
difference of the desired and the current angular velocity [7],
[12], [23]. We will show that this error selection leads to non-
autonomous closed loop dynamics. The local convergence
properties in this case combined with the vector part of the
quaternion error is studied in [24]. More recent works [14],
[25]–[28] utilize a different angular velocity error, exploiting
the geometry of the quaternion manifold.

The majority of related works in the literature, include
proofs of the asymptotic stability of error dynamics. Ex-
ponential stability to the best of our knowledge is only
addressed in [27] for an attitude tracking control system
utilizing rotation matrices. In this work, we will prove
exponential stability of the error dynamics with constant
control gains in all formulations. This is in contrast to the
claim made in some previous works that some cases require
time varying gains e.g. [12] for the orientation error proposed
in [10] and [29] for the logarithmic error. In contrast to
asymptotic stability, exponential stability offers information
about the system’s convergence rate resulting in more intu-
itive system design. Furthermore, we will show that under
certain conditions frequently encountered in practice, the
formulation respecting the geometric characteristics of the
quaternion manifold and its tangent space yields linear track-
ing dynamics; hence transient specifications like convergence
rate or avoiding overshoot can be satisfied by appropriate
gain selection without tuning. This linear behavior offers
predictability which can be vital in high precision tasks.

II. UNIT QUATERNIONS

A unit quaternion Q = [η εT ]T is given by a scalar
part η and a three dimensional vector part ε referred to as
the real and imaginary part respectively; unit quaternions
expressed by 4-dimensional vectors belong to a sphere of
dimension 3 i.e. Q ∈ S3. Unit quaternions are the minimal
singularity free representation of the orientation of a rigid
body expressed by the rotation matrix R ∈ SO(3). The unit



quaternion space S3 is mapped to SO(3) by the mapping:

R = I3 + 2ηS(ε) + 2S2(ε) (1)

where I3 is the identity matrix of dimension 3 and S(x) the
skew symmetric matrix constructed by a vector x:

S(x) =

 0 −x3 x2
x3 0 −x1
−x2 x1 0


Unit quaternions are related to the equivalent axis n and
rotation angle θ in the following way:

Q =
[
η εT

]T
=
[
cos θ2 sin θ

2n
T
]T

(2)

The product of two unit quaternions is also a unit quaternion
and is given by:

Q1 ∗Q2 =

[
η1 −εT1
ε1 η1I3 + S(ε1)

]
Q2 (3)

The inverse of a unit quaternion coincides with its conjugate
Q =

[
η −εT

]T
.

The unit quaternion space S3 is a three dimensional
Riemannian manifold. At each point on this manifold cor-
responds a tangent space of angular velocity vectors. The
manifold S3 forms a Lie group endowed with the quaternion
multiplication (3) [30]. An efficient way to transition between
the manifold and its tangent space is the utilization of
distance preserving mappings that take into account their
geometric characteristics. These are the exponential and
logarithmic mappings between a unit quaternion Q ∈ S3 and
a tangent vector x ∈ R3 stemming from the Lie Algebra of
S3 and are defined as follows:

expx =


[
cos ‖x‖ sin ‖x‖ x

T

‖x‖

]T
, ‖x‖ 6= 0[

1 0 0 0
]T
, ‖x‖ = 0

(4)

logQ =


cos−1 η
‖ε‖ ε, ‖ε‖ 6= 0[

0 0 0
]T
, ‖ε‖ = 0

(5)

The quaternion logarithm can also be written as a function
of the axis and angle through (2):

logQ =

n
θ
2 , θ 6= 0[

0 0 0
]T
, θ = 0

(6)

A. Unit Quaternion Kinematics

The derivative of a unit Quaternion is associated with the
angular velocity expressed in the inertia frame by:

Q̇ =
1

2
JQ(Q)ω (7)

with
JQ(Q) =

[
−εT

ηI3 − S(ε)

]
(8)

It is easy to establish some properties for matrix JQ(Q) (8):

JTQJQ = I3 JTQQ = 0 (9)

Hence the columns of matrix JQ(Q) form an orthogonal
base of the tangent space of S3 at Q.

Let Q̃ ∈ S3 denote the error between a desired quater-
nion Qd and the current quaternion Q along the geodesic
connecting the two points expressed in the inertia frame:

Q̃ = Q ∗Qd =
[
η̃ ε̃T

]T
(10)

To ensure that the quaternion error represents the minimal
rotation we constrain its scalar part η̃ ≥ 0 resulting through
(2) to error angles in [−π, π), since η̃ = cos θ̃2 .

Differentiating Q ∗ Qd in (10) using (7), (8) yields the
derivatives of the quaternion error’s scalar and vector parts:

˙̃η = −1

2
ε̃T (ω − ωd) (11)

˙̃ε =
1

2
(η̃I3 − S(ε̃))(ω − ωd) + S(ωd)ε̃ (12)

Equations (11) and (12) can also be written as:

˙̃η = −1

2
ε̃T (ω − R̃ωd) (13)

˙̃ε =
1

2
(η̃I3 − S(ε̃))(ω − R̃ωd) (14)

and in compact form:

˙̃
Q =

1

2
JQ(Q̃)(ω − R̃ωd) (15)

where R̃ is derived from Q̃ through (1). Notice the similarity
of (15) with (7). Hence ω − R̃ωd represents the angular
velocity on the tangent space of S3 at Q̃.

III. TRACKING CONTROL VARIANTS

The control objective is the tracking of a desired orien-
tation trajectory Qd, ωd, ω̇d. Consider systems that can be
put in the form:

ω̇ = u (16)

where ω̇ is the system’s angular acceleration and u is
the control input. Equation (16) expresses the second order
kinematics of a rigid body rotational motion. The respective
rigid body dynamics (e.g. a robot’s end-effector) can further
take this form via an inner inverse dynamics control loop.
In the literature, two types of control structures have been
proposed. They differ with respect to the angular velocity
error they utilize. These are:

ω̃E , ω − ωd (17)

ω̃G , ω − R̃ωd (18)

The first is the trivial case, employing the Euclidean differ-
ence between the current and desired angular velocity [7],
[12], [23]. The second angular velocity error represents the
angular velocity at Q̃ as discussed in the end of Section
II, which takes into account the geometry of S3 [14], [25]–
[28]. Matrix R̃ in (18) operates as a transport map which
allows velocities belonging to different tangent spaces to
be compared [31]. In contrast, the angular velocities ω and
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Fig. 1: Scalar function of the error angle θ̃ for each quaternion orientation
error and Ψi function.

ωd in (17) only belong in the same tangent space for small
errors. The respective control inputs are given by:

uE = ω̇d − dω̃E − κei (19)

uG =
d(R̃ωd)

dt
− dω̃G − κei (20)

where d, κ > 0 are positive damping and stiffness gains and
ei is an expression of the orientation error in R3. Notice that
˙̃
R involved in d(R̃ωd)

dt in (20) is given by ˙̃
R = S(ω̃G)R̃.

To construct a control system on the manifold of S3,
one needs to define an appropriate orientation error function
Ψ : S3 × S3 → R, which is positive definite and measures
the error between two orientations [32]. The orientation and
angular velocity errors emerge by differentiating Ψ. Related
to the three choices of ei suggested in the literature we select
the following orientation error functions Ψi:
• The vector part of Q̃ [1], [12], [14], [15]:

eε , ε̃ = sin
θ̃

2
ñ (21)

Ψε , 2(1− η̃) (22)

• Double the product of the scalar and the vector part of
Q̃ [10], [11]:

ea , 2η̃ε̃ = sin θ̃ñ (23)

Ψa , 2ε̃T ε̃ (24)

• Double the quaternion logarithm (6) of Q̃ [16]–[19]:

el , 2 log Q̃ = θ̃ñ (25)

Ψl ,
1

2
θ̃2 (26)

For every orientation error, it is easy to prove that the
derivative of the respective orientation error function yields:

Ψ̇i = eTi ω̃G = eTi ω̃E ∀i = {ε, a, l} (27)

Notice that each orientation error is a product of the error
rotation axis ñ with a scalar function of the error angle fi(θ̃)
that is depicted in Figure 1, along with function Ψi.

The vector part of Q̃ (21), proposed in [12] is the most
popular to this day, as it facilitates Lyapunov stability anal-
ysis of control systems. However, it yields slower response
than other selections [16]. The second error (23) is contin-
uous when the error angle crosses ±π as opposed to the
other choices but it is a non-monotonous function of the error
angle as shown in Figure 1. Hence, its behavior deteriorates
when angle errors are larger than π

2 [27]. Moreover ea = 0
implies ε̃ = 0, (which in turn implies Q = Qd) or η̃ = 0;
when η̃ = 0 (θ̃ = −π), ε̃ 6= 0 and hence Q does not track
Qd. The logarithmic error (25) is gaining popularity in recent
research works [16]–[19] as it offers a more mathematically
sound approach utilizing the Lie Algebra of S3 by employing
the distance preserving logarithmic mapping.

Differentiating the orientation error using (11)-(14) we get:

ėi = Jiω̃G (28)

ėi = Jiω̃E − S(ei)ωd (29)

where matrix Ji is given for each error selection in Ap-
pendix. System (16) with control inputs (19), (20) yield the
following closed loop tracking systems:

˙̃ωE + dω̃E + κei = 0 (30)

˙̃ωG + dω̃G + κei = 0 (31)

In the following sections, we express (30) and (31) in state
space, find their equilibria, show the exponential convergence
to the origin, determine the region of attraction and indicate
conditions that render the tracking system linear and thus
allow gain selection that satisfy predefined specifications.

IV. STABILITY ANALYSIS

Define the state space vectors for i = {ε, a, l}, j =
{G,E}:

ξji =
[
eTi ω̃Tj

]T
(32)

In state space form the system is written as:

ξ̇ji =

[
A11 Ji
−κI3 −dI3

]
ξji (33)

where A11 = 0 for j = G and A11 = S(ωd) for j = E.
Notice that due to the time dependant term S(ωd), system
(30), with angular velocity error ω̃E is non-autonomous.

Proposition 1. In the region θ̃ ∈ [−π, π) the origin ξji = 0
is a unique equilibrium of (33) for i = {ε, a, l}, j = {G,E}

Proof. Setting ˙̃ωj = 0, the second equation of (33) yields
ω̃j = −κdei. For i = ε setting ˙̃ε = 0 implies ˙̃η = 0
owing to the unit quaternion norm constraint. Substituting
the above in (11) or (13) implies −κd ε̃

T ε̃ = 0 and in turn
ξjε = 0. For i = l, setting ˙̃el = 0, the first equation of
(33), using Jlel = el from the Appendix, yields el = 0
for j = G and

(
−κdI3 + S(ωd)

)
el = 0 for j = E. Notice

that matrix
(
−κdI3 + S(ωd)

)
is full rank, thus the origin

is the only equilibrium of (33) for i = l. For i = a,
as before we get Jaea = 0 for j = G; substituting Ja
from (55) and ea from (23) we get after some calculations



Jaea = (2η̃2 − 1)ea = 0. For j = E, we find respectively(
−κd (2η̃2 − 1)I3 + S(ωd)

)
ea = 0. Notice that the expres-

sion in the parenthesis is zero for the value of η̃ = 1√
2

which

implies ω̃j = −
√
2κ
d ε̃. Substituting this result in (11) or (13)

yields ˙̃η = κ√
2d
ε̃T ε̃ 6= 0 and hence the solution cannot stay

at this value. Thus, in the above identities ea = 0 is the only
solution. Notice that ea = 0 does not guarantee tracking as
discussed in Section III for η̃ = 0. It is however possible to
show that this is not a stable state.

Theorem 1. The origin ξji = 0 of (33) for i = {ε, a, l}, j =
{G,E} is exponentially stable and an estimate of its the
region of attraction is:

Ψi(0) < 2, i = {ε, a}, Ψl(0) <
1

2
π2 (34)

‖ω̃j(0)‖2 <

{
2κ(2−Ψi(0)), i = {ε, a}
2κ( 1

2π
2 −Ψi(0)), i = l

(35)

Proof. We will initially prove that (34), (35) is an invariant
set. The inequality (34) holds since θ̃ ∈ (−π, π). Consider
the function:

W (ξji ) = κΨi +
1

2
ω̃Tj ω̃j (36)

It is easy to show that Ẇ = −dω̃Tj ω̃j ≤ 0, which implies
W (t) ≤ W (0). Using (34), (35), W (0) is bounded by
W (0) < 2κ for i = {ε, a} and W (0) < 1

2κπ
2 for i = l.

Since, κΨi(t) ≤ W (t) ≤ W (0), Ψi(t) < 2 for i = {ε, a}
and Ψi(t) <

1
2π

2 for i = l ∀t > 0 which means that the
orientation errors are well defined.

Define the candidate Lyapunov function:

V (ξji ) = κΨi +
1

2
ω̃Tj ω̃j + ceTi ω̃j (37)

Notice that:

ζji
T
Liζ

j
i ≤ V ≤ ζ

j
i

T
Uiζi

j (38)

where
ζji =

[
‖ei‖ ‖ω̃j‖

]T
(39)

and
Li =

[
L11

−c
2−c

2
1
2

]
Ui =

[
U11

c
2

c
2

1
2

]
(40)

where L11 = κ, U11 = 2κ for i = ε, L11 = U11 = κ
2η̃2 for

i = a and L11 = U11 = κ
2 for i = l. Notice that (34) implies

η̃ > 0. Matrices Li, Ui are positive definite when c <
√

2κ,
for i = ε and c <

√
κ, for i = {a, l}. Differentiating (37)

for j = G, using (31), (27) yields:

V̇ = −dω̃TGω̃G − cκeTi ei − cdeTi ω̃G + cω̃TGJiω̃G ≤
(−d+ c‖Ji‖)‖ω̃G‖2 − cκ‖ei‖2 + cd‖ω̃G‖‖ei‖ ≤

−ζGi
T
MG

i ζ
G
i

(41)

Differentiating (37) for j = E using (30), (27) yields:

V̇ = −dω̃TEω̃E − cκeTi ei − cdeTi ω̃E + cω̃TEJiω̃E+

cω̃TES(ωd)ei ≤ (−d+ c‖Ji‖)‖ω̃E‖2 − cκ‖ei‖2+

c(d+B)‖ω̃E‖‖ei‖ ≤ −ζEi
T
ME

i ζ
E
i

(42)

where B ≥ ‖ωd‖ is the maximum norm value of the desired
angular velocity and M j

i are given by:

MG
i =

[
cκ − cd2
− cd2 d− c‖Ji‖

]
ME

i =

[
cκ −cd+B2

−cd+B2 d− c‖Ji‖

]
(43)

Using (60), matrices (43) are positive definite when c <
4κd

2κpi+q2j
, with pε = 1, pa = 2, pl = π and qG = d, qE =

d + B. Since there exists a value for c that satisfies this
constraint, the origin is exponentially stable [33], with:

‖ζji (t)‖ ≤

√
λmax(Ui)

λmin(Li)
exp

(
−λmin(M j

i )

2λmax(Ui)
t

)
‖ζji (0)‖

(44)

Remark 1. We will now show that η̃ = 0 is not a stable
state for i = a. Consider the set:

ξS =
{
ea ∈ R3, ω̃j ∈ R3 | η̃ = 0, ω̃j = 0

}
(45)

We have already shown that for function (36) Ẇ ≤ 0. Notice
that W (ξS) = 2κ, since ‖ε̃‖ = 1 in this case. Assume a
point ξσ emerging from a small disturbance η̃ = σ. Then,
W (ξσ) = 2κ(1−σ2) < W (ξS). Thus if ξS is perturbed, ξja
will never return to ξS , rendering it unstable.

V. TRACKING SYSTEM LINEARITY CONDITIONS
AND GAIN SELECTION

We will now show that controller (20) utilizing the angular
velocity error ω̃G (18) with the logarithmic orientation error
el (25) yields linear tracking error dynamics with certain
initial conditions. The latter is typical in many applications.
We will further show that for small error angles the system
remains linear, regardless of the initial conditions, even in the
presence of disturbances. This property is useful considering
a tracking system at steady state under modelling errors and
measurement noise. In these cases, one can select control
gain values for κ, d that satisfy specifications about the
speed of response and its damping ratio (e.g being critically
damped) or even satisfy a desired compliant behaviour under
external forces.

Proposition 2. System (31) with the geometric angular
velocity error and the logarithmic orientation error el (25)
yields linear tracking error dynamics in case the initial
angular velocity error ω̃G(0) is zero or the initial orientation
error el(0) is zero.

Proof. Using (15), (9) and (2) we get:

ω̃G = 2JTQ(Q̃)
˙̃
Q =

˙̃
θñ+ sin θ̃ ˙̃n+ (1− cos θ̃)S(ñ) ˙̃n (46)

Notice that (46) has three orthogonal components, since ˙̃n is
the derivative of the unit vector ñ and is orthogonal to it by
construct, and S(ñ) ˙̃n represents the cross product between
ñ and ˙̃n. Differentiating (25) yields:

ėl =
˙̃
θñ+ θ̃ ˙̃n (47)



Notice from (46) and (47) that when ˙̃n = 0, the geometric
angular velocity error is equal to the derivative of the
logarithmic orientation error. Define the projection matrices
P‖ = ññT , P⊥ = I3 − ññT . Projecting (46) yields:

P‖ω̃G =
˙̃
θñ (48)

P⊥ω̃G = sin θ̃ ˙̃n+ (1− cos θ̃)S(ñ) ˙̃n (49)

Differentiating (48) and (49) using (31), with i = l and (46)
yields:

d

dt

(
P‖ω̃G

)
= (‖ ˙̃n‖2 sin θ̃ − d ˙̃

θ − κθ̃)ñ+
˙̃
θ ˙̃n (50)

d

dt
(P⊥ω̃G) = −d(sin θ̃ ˙̃n+ (1− cos θ̃)S(ñ) ˙̃n)−

‖ ˙̃n‖2 sin θ̃ñ− ˙̃
θ ˙̃n

(51)

Let the initial orientation error be el(0)) = θ̃(0)ñ(0) and
the initial angular velocity error ω̃G(0) = 0. Given that
θ̃(0) 6= 0, the initial condition ω̃G(0) = 0 implies from
(46) that ˙̃n(0) = 0, ˙̃

θ(0) = 0. Hence from (50) and (51) we
deduce that d

dt (P⊥ω̃G) remains zero and ω̃G evolves along
the direction of ñ(0) implying ˙̃n = 0.

Consider now el(0) = 0 and ω̃G(0) = ω̃0 6= 0. Zero
initial orientation error implies θ̃(0) = 0, which from (46)
implies that ω̃0 =

˙̃
θ(0)ñ(0). From (47) we get ėl(0) =

˙̃
θ(0)ñ(0), thus the orientation error tends to evolve in the
direction of ñ(0), implying ˙̃n(0) = 0. Hence again from
(50) and (51) we again deduce that d

dt (P⊥ω̃G) remains zero
and ω̃G evolves along the direction of ñ(0) implying ˙̃n = 0.

From the above analysis, we deduce that in both cases,
the system is linear as ėl = ω̃G =

˙̃
θñ.

Remark 2. System (31) with orientation errors eε (21)
or ea (23) yields an angular velocity error ω̃G along
ñ(0) following the same analysis performed in the above
proof. However the resulting dynamics is not linear as the
orientation error derivatives are ėε =

˙̃
θ
2 cos θ̃2 ñ+sin θ̃

2
˙̃n and

ėa =
˙̃
θ cos θ̃ñ+ sin θ̃ ˙̃n respectively.

We will now consider system (31) with a disturbance input
uDist:

˙̃ωG + dω̃G + κei = uDist (52)

Consider small disturbances which can occur by unmod-
elled environment dynamics. Such disturbances induce small
errors to the system, disrupting the linear behavior of the
above analysis. However, for small error angles θ̃ < π

6 the
approximations sin θ̃ ≈ θ̃ and cos θ̃ ≈ 1 hold, thus (46) can
be written as:

ω̃G =
˙̃
θñ+ θ̃ ˙̃n = ėl (53)

making the system again linear.

Remark 3. Considering the other two error selections,
(53) also holds for the angle axis orientation error (23).
Therefore, near the system’s steady state the behavior of the
two orientation errors is similar. However, as we discussed
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Fig. 2: Desired orientation and angular velocity trajectories.

in Section III this error selection’s performance deteriorates
for large error angles.

VI. SIMULATION RESULTS

We will demonstrate the performance of controllers (19),
(20) using all three types of orientation errors (21), (23), (25).
For the numerical integration of the quaternion error we have
used the exponential mapping (4) in order to preserve its unit
norm: Q̃(t+ ∆t) = exp

(
1
2 ω̃G(t+ ∆t)∆t

)
∗ Q̃(t)

We present the results of two sets of simulations, using
two different desired trajectories shown in Figure 2. Their
main difference is that the second trajectory has a non zero
initial angular velocity. For the first trajectory the system was
initialized with θ̃0 = 3π

4 , and zero angular velocity error,
while for the second with θ̃0 = 0 and angular velocity errors
with initial norm ‖ω̃G‖ = ‖ω̃E‖ = 20.9rad/s. Therefore
the two systems would cover the two cases of linearity of
Proposition 2. The control gains were set κ = 30.25 and
d = 11, for the linear system to be critically damped with
settling time ts ≈ 1s. Figures 3 and 4 show responses
of the error angle and the norm of the angular velocity
error respectively for both systems, where (30) is depicted
with dotted lines and (31) is depicted with solid lines and
for all orientation error selections; the left subplot includes
responses for the case of zero initial angular velocity while
the right subplot those with a non-zero angular velocity. In
Figure 3 we call ”geometric”, error angle responses from (31)
and ”Euclidean” those from (30). In Figure 4 we show the
response of ω̃E and ω̃G. The subplot within this figure is a
closer to the x- axis view. Responses converge exponentially
to the origin as expected. For both trajectories, el in system
(31) responds with the expected speed as it is related to
a linear tracking system according to Proposition 2. In all
cases, it is evident that system (31) converges faster than
(30), owing to its autonomous nature. Indeed, as shown
in (43), the system’s convergence rate is dependant on the
bound of the norm of the desired angular velocity, rendering
slower than (31). Notice that in both figures, due to the non-
autonomous nature of system (30) the sinusoidal nature of
the input is also present in the error system response.
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Fig. 3: Simulation Result: Error angle convergence.
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Fig. 4: Simulation Result: Angular velocity error convergence.

VII. EXPERIMENTAL RESULTS

We implemented the methods studied in the previous
sections using a UR5e robotic manipulator operating with
control frequency 500Hz. The planned trajectory was de-
signed to resemble that of a polishing task of the interior
of a spherical surface. The position of the wrist was kept
constant; we can imagine this as the center of the sphere
with the polishing tool having the length of the sphere’s
radius. We again conducted two experiments, one with zero
initial angular velocity and one with non zero. In both
cases the system was initialized with error angle θ̃ = π

3 .
The two trajectories are shown in Figure 5. We integrated
system (33) producing a reference trajectory Q,ω. Then the
joint reference trajectory was provided to the robot utilizing
a Closed Loop Inverse Kinematics scheme [34]. In our
experiments we set as requirement a compliant behavior, thus
system parameters were set to κ = d = 4, making the linear
system critically damped with settling time ts ≈ 3.

Experimental results are shown in Figures 6, 7. All error
selections are shown to converge exponentially to zero. In
the first trajectory, the system using the logarithmic orien-
tation error and the geometric angular velocity error, shows
linear response. The second trajectory only demonstrates the
exponential convergence of all systems, as it does not obey
the conditions of Proposition 2, since for el(0) 6= 0 and

Fig. 5: Desired robot orientation and angular velocity trajectories.

Fig. 6: Experimental Result: Error angle convergence.

ω̃G(0) 6= 0. Again with el convergence is faster followed
closely by the response with the use of ea. This is because
the initial angle error in the experiment is much less to the
one used in the simulations (π3 vs 3π

4 ) and soon θ̃ becomes
small enough for the approximation sin θ̃ ≈ θ̃ to hold; the
latter implies el ≈ ea. Furthermore responses from the
geometric and Euclidean system are similar, since the bound
of the desired angular velocity norm is not as large as in the
simulations to create notable differences.

We performed an additional experiment with regulation
control, with a large initial error angle θ̃(0) = 3π

4 . Notice
that in the case of regulation control, where ωd = 0∀t,
the two angular velocity errors become identical. Therefore
there is not difference between system (31) and (30). The
results are shown in Figure 8. The logarithmic orientation
error is shown to reach faster the desired orientation, with
settling time again ts ≈ 3s, as expected since it exhibits
linear behavior. Due to the larger initial error angle, the
performance of the angle axis orientation error is shown to
deteriorate from the previous experiment.

We tested the performance of the logarithmic orientation
error external inputs with an admittance control setup, using
(52). A polishing tool was mounted to the robot’s end
effector, being in contact with a mechanical part. The setup
is shown in Figure 9. To execute the task, Trajectory 1 from



Fig. 7: Experimental Result: Angular velocity error convergence.
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Fig. 8: Experimental Result: Error angle and angular velocity error conver-
gence during regulation control.

Figure 5 was fed to (52), with the measurements from the
robot’s Force/Torque sensor used as an external input.

Experimental results are shown in Figures 10 and 11. In
Figure 10 the contact torque norm is shown to induce small
error angles, less than π

6 . Thus the approximations discussed
in Section V hold and the system should remain linear.
This claim is further demonstrated in Figure 11, where the
geometric angular velocity error is shown to be equal with
the derivative of the logarithmic orientation error.

VIII. CONCLUSIONS

In this work we studied trajectory tracking in the orien-
tation space using the unit quaternion representation. We
presented existing variants regarding the orientation error

Fig. 9: Experimental setup for the polishing task.
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Fig. 10: Experimental Result: Error angle and disturbance norm during
polishing task.
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Fig. 11: Experimental Result: Angular velocity error and derivative of
logarithmic orientation error during polishing task.

and angular velocity error. We have associated each of these
choices with the appropriate orientation error function and
rigorously proved exponential error convergence in all cases.
We have further showed that the formulation respecting
the geometric characteristics of the quaternion manifold
and its tangent space yields linear tracking dynamics under
conditions frequently encountered in practice. Thus transient
specification can be satisfied by appropriate gain selection
without tuning. Theoretical results are validated by simula-
tions and experiments.

APPENDIX
ORIENTATION ERROR JACOBIAN MATRICES

We will now provide the Jacobian matrices used in equa-
tions (28), (29). When using the vector part orientation error
(21), we can write (14) and (12) as (28) and (29) with:

Jε =
1

2
(η̃I3 − S(ε̃)) (54)

For the angle axis orientation error we differentiate (23)
substituting ˙̃η and ˙̃ε from (13) (14) for j = G and (11)
(12) for j = E to get:

Ja = η̃2I3 − ε̃ε̃T − η̃S(ε̃) (55)

For the logarithmic orientation error when differentiating
(25) we need ˙̃

θ and ˙̃n, which can be found by differentiating



the axis and angle representations of (2):
˙̃
θ = ñT ω̃G = ñT ω̃E (56)

˙̃n = −1

2

(
cos θ̃2

sin θ̃
2

S(ñ) + I3

)
S(ñ)ω̃G (57)

and

˙̃n = −1

2

(
cos θ̃2

sin θ̃
2

S(ñ) + I3

)
S(ñ)ω̃E − S(ñ)ωd (58)

Thus, we get:

Jl = −
θ̃
2 cos ( θ̃2 )

sin θ̃
2

S2(ñ)− θ̃

2
S(ñ) + ññT (59)

It is easy to prove using (25) that Jlel = el. In fact Jl has an
eigenvalue of one and hence el is the associated eigenvector.
Notice that this property applies only for the logarithmic
orientation error.

By evaluating the singular values of Ji. it can be shown
that the norm of Ji is given by:

‖Ji‖ =


1
2 i = ε

max (η̃, |1− 2η̃2|) i = a

h(θ̃) i = l

(60)

where

h(θ̃) =
θ̃
2

sin
(
θ̃
2

) (61)

Notice that 1 ≤ h(θ̃) ≤ π
2 ∀θ̃ ∈ [−π, π) and ‖Ja‖ ≤ 1.
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Caldwell, “An approach for imitation learning on riemannian mani-
folds,” IEEE Robotics and Automation Letters (RA-L), vol. 2, no. 3,
pp. 1240–1247, July 2017.

[22] K. Li, F. Pfaff, and U. D. Hanebeck, “Grid-based quaternion filter for
so(3) estimation,” in 2020 European Control Conference (ECC), 2020,
pp. 1738–1744.

[23] F. Caccavale, C. Natale, B. Siciliano, and L. Villani, “Resolved-
acceleration control of robot manipulators: A critical review with
experiments,” Robotica, vol. 16, no. 5, p. 565–573, 1998.

[24] R. Campa, R. Kelly, and E. Garcia, “On stability of the resolved
acceleration control,” in Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No.01CH37164), vol. 4,
May 2001, pp. 3523–3528 vol.4.

[25] J. Biggs, “A quaternion-based attitude tracking controller for robotic
systems,” in IMA Conference on Mathematics of Robotics, GBR,
September 2015.

[26] Z. Yu and G. Li, “Quaternion-based robust sliding mode control for
spacecraft attitude tracking,” in 2019 Chinese Control And Decision
Conference (CCDC), June 2019, pp. 2495–2500.

[27] T. Lee, “Exponential stability of an attitude tracking control system on
so(3) for large-angle rotational maneuvers,” Systems & Control Letters,
vol. 61, no. 1, pp. 231 – 237, 2012.

[28] X. Liu, M. Zhang, J. Chen, and B. Yin, “Trajectory tracking with
quaternion-based attitude representation for autonomous underwater
vehicle based on terminal sliding mode control,” Applied Ocean
Research, vol. 104, p. 102342, 2020.

[29] M. Saveriano, F. Franzel, and D. Lee, “Merging position and orienta-
tion motion primitives,” in 2019 International Conference on Robotics
and Automation (ICRA), May 2019, pp. 7041–7047.
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