Report Open Access
<?xml version='1.0' encoding='UTF-8'?> <record xmlns="http://www.loc.gov/MARC21/slim"> <leader>00000nam##2200000uu#4500</leader> <datafield tag="041" ind1=" " ind2=" "> <subfield code="a">eng</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Adversarial machine learning</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Malware detection</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">MLSEC</subfield> </datafield> <datafield tag="653" ind1=" " ind2=" "> <subfield code="a">Static malware detection</subfield> </datafield> <controlfield tag="005">20210929014826.0</controlfield> <controlfield tag="001">5534783</controlfield> <datafield tag="856" ind1="4" ind2=" "> <subfield code="s">84729</subfield> <subfield code="z">md5:880872a772a5b14d38de0adb6064673d</subfield> <subfield code="u">https://zenodo.org/record/5534783/files/mlsec2021.pdf</subfield> </datafield> <datafield tag="542" ind1=" " ind2=" "> <subfield code="l">open</subfield> </datafield> <datafield tag="260" ind1=" " ind2=" "> <subfield code="c">2021-09-28</subfield> </datafield> <datafield tag="909" ind1="C" ind2="O"> <subfield code="p">openaire</subfield> <subfield code="o">oai:zenodo.org:5534783</subfield> </datafield> <datafield tag="100" ind1=" " ind2=" "> <subfield code="0">(orcid)0000-0002-6020-3569</subfield> <subfield code="a">Mosquera, Alejandro</subfield> </datafield> <datafield tag="245" ind1=" " ind2=" "> <subfield code="a">amsqr at MLSEC-2021: Thwarting Adversarial Malware Evasion with a Defense-in-Depth</subfield> </datafield> <datafield tag="540" ind1=" " ind2=" "> <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield> <subfield code="a">Creative Commons Attribution 4.0 International</subfield> </datafield> <datafield tag="650" ind1="1" ind2="7"> <subfield code="a">cc-by</subfield> <subfield code="2">opendefinition.org</subfield> </datafield> <datafield tag="520" ind1=" " ind2=" "> <subfield code="a"><p>This paper describes the author&#39;s participation in the 3rd edition of the Machine Learning Security Evasion Competition (MLSEC-2021) sponsored by CUJO AI, VM-Ray, MRG-Effitas, Nvidia and Microsoft. As in the previous year the goal was not only developing measures against adversarial attacks on a pre-defined set of malware samples but also finding ways of bypassing other teams&#39; defenses in a simulated cloud environment. The submitted solutions were ranked second in both defender and attacker tracks.</p></subfield> </datafield> <datafield tag="773" ind1=" " ind2=" "> <subfield code="n">doi</subfield> <subfield code="i">isVersionOf</subfield> <subfield code="a">10.5281/zenodo.5534782</subfield> </datafield> <datafield tag="024" ind1=" " ind2=" "> <subfield code="a">10.5281/zenodo.5534783</subfield> <subfield code="2">doi</subfield> </datafield> <datafield tag="980" ind1=" " ind2=" "> <subfield code="a">publication</subfield> <subfield code="b">report</subfield> </datafield> </record>
All versions | This version | |
---|---|---|
Views | 308 | 308 |
Downloads | 207 | 207 |
Data volume | 17.5 MB | 17.5 MB |
Unique views | 253 | 253 |
Unique downloads | 186 | 186 |