Report Open Access
<?xml version='1.0' encoding='utf-8'?> <oai_dc:dc xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:oai_dc="http://www.openarchives.org/OAI/2.0/oai_dc/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd"> <dc:creator>Mosquera, Alejandro</dc:creator> <dc:date>2021-09-28</dc:date> <dc:description>This paper describes the author's participation in the 3rd edition of the Machine Learning Security Evasion Competition (MLSEC-2021) sponsored by CUJO AI, VM-Ray, MRG-Effitas, Nvidia and Microsoft. As in the previous year the goal was not only developing measures against adversarial attacks on a pre-defined set of malware samples but also finding ways of bypassing other teams' defenses in a simulated cloud environment. The submitted solutions were ranked second in both defender and attacker tracks.</dc:description> <dc:identifier>https://zenodo.org/record/5534783</dc:identifier> <dc:identifier>10.5281/zenodo.5534783</dc:identifier> <dc:identifier>oai:zenodo.org:5534783</dc:identifier> <dc:language>eng</dc:language> <dc:relation>doi:10.5281/zenodo.5534782</dc:relation> <dc:rights>info:eu-repo/semantics/openAccess</dc:rights> <dc:rights>https://creativecommons.org/licenses/by/4.0/legalcode</dc:rights> <dc:subject>Adversarial machine learning</dc:subject> <dc:subject>Malware detection</dc:subject> <dc:subject>MLSEC</dc:subject> <dc:subject>Static malware detection</dc:subject> <dc:title>amsqr at MLSEC-2021: Thwarting Adversarial Malware Evasion with a Defense-in-Depth</dc:title> <dc:type>info:eu-repo/semantics/report</dc:type> <dc:type>publication-report</dc:type> </oai_dc:dc>
All versions | This version | |
---|---|---|
Views | 338 | 338 |
Downloads | 219 | 219 |
Data volume | 18.6 MB | 18.6 MB |
Unique views | 278 | 278 |
Unique downloads | 198 | 198 |