Report Open Access
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/6b38b226-9c5d-4eb1-8c5b-e9369dfa085f/mlsec2021.pdf" }, "checksum": "md5:880872a772a5b14d38de0adb6064673d", "bucket": "6b38b226-9c5d-4eb1-8c5b-e9369dfa085f", "key": "mlsec2021.pdf", "type": "pdf", "size": 84729 } ], "owners": [ 256367 ], "doi": "10.5281/zenodo.5534783", "stats": { "version_unique_downloads": 186.0, "unique_views": 253.0, "views": 308.0, "version_views": 308.0, "unique_downloads": 186.0, "version_unique_views": 253.0, "volume": 17538903.0, "version_downloads": 207.0, "downloads": 207.0, "version_volume": 17538903.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.5534783", "conceptdoi": "https://doi.org/10.5281/zenodo.5534782", "bucket": "https://zenodo.org/api/files/6b38b226-9c5d-4eb1-8c5b-e9369dfa085f", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5534782.svg", "html": "https://zenodo.org/record/5534783", "latest_html": "https://zenodo.org/record/5534783", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5534783.svg", "latest": "https://zenodo.org/api/records/5534783" }, "conceptdoi": "10.5281/zenodo.5534782", "created": "2021-09-28T18:52:23.364956+00:00", "updated": "2021-09-29T01:48:26.685421+00:00", "conceptrecid": "5534782", "revision": 2, "id": 5534783, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.5534783", "description": "<p>This paper describes the author's participation in the 3rd edition of the Machine Learning Security Evasion Competition (MLSEC-2021) sponsored by CUJO AI, VM-Ray, MRG-Effitas, Nvidia and Microsoft. As in the previous year the goal was not only developing measures against adversarial attacks on a pre-defined set of malware samples but also finding ways of bypassing other teams' defenses in a simulated cloud environment. The submitted solutions were ranked second in both defender and attacker tracks.</p>", "language": "eng", "title": "amsqr at MLSEC-2021: Thwarting Adversarial Malware Evasion with a Defense-in-Depth", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "5534782" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "5534783" } } ] }, "keywords": [ "Adversarial machine learning", "Malware detection", "MLSEC", "Static malware detection" ], "publication_date": "2021-09-28", "creators": [ { "orcid": "0000-0002-6020-3569", "name": "Mosquera, Alejandro" } ], "access_right": "open", "resource_type": { "subtype": "report", "type": "publication", "title": "Report" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.5534782", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 308 | 308 |
Downloads | 207 | 207 |
Data volume | 17.5 MB | 17.5 MB |
Unique views | 253 | 253 |
Unique downloads | 186 | 186 |