UPDATE: Zenodo migration postponed to Oct 13 from 06:00-08:00 UTC. Read the announcement.

Report Open Access

amsqr at MLSEC-2021: Thwarting Adversarial Malware Evasion with a Defense-in-Depth

Mosquera, Alejandro


DataCite XML Export

<?xml version='1.0' encoding='utf-8'?>
<resource xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://datacite.org/schema/kernel-4" xsi:schemaLocation="http://datacite.org/schema/kernel-4 http://schema.datacite.org/meta/kernel-4.1/metadata.xsd">
  <identifier identifierType="DOI">10.5281/zenodo.5534783</identifier>
  <creators>
    <creator>
      <creatorName>Mosquera, Alejandro</creatorName>
      <givenName>Alejandro</givenName>
      <familyName>Mosquera</familyName>
      <nameIdentifier nameIdentifierScheme="ORCID" schemeURI="http://orcid.org/">0000-0002-6020-3569</nameIdentifier>
    </creator>
  </creators>
  <titles>
    <title>amsqr at MLSEC-2021: Thwarting Adversarial Malware Evasion with a Defense-in-Depth</title>
  </titles>
  <publisher>Zenodo</publisher>
  <publicationYear>2021</publicationYear>
  <subjects>
    <subject>Adversarial machine learning</subject>
    <subject>Malware detection</subject>
    <subject>MLSEC</subject>
    <subject>Static malware detection</subject>
  </subjects>
  <dates>
    <date dateType="Issued">2021-09-28</date>
  </dates>
  <language>en</language>
  <resourceType resourceTypeGeneral="Report"/>
  <alternateIdentifiers>
    <alternateIdentifier alternateIdentifierType="url">https://zenodo.org/record/5534783</alternateIdentifier>
  </alternateIdentifiers>
  <relatedIdentifiers>
    <relatedIdentifier relatedIdentifierType="DOI" relationType="IsVersionOf">10.5281/zenodo.5534782</relatedIdentifier>
  </relatedIdentifiers>
  <rightsList>
    <rights rightsURI="https://creativecommons.org/licenses/by/4.0/legalcode">Creative Commons Attribution 4.0 International</rights>
    <rights rightsURI="info:eu-repo/semantics/openAccess">Open Access</rights>
  </rightsList>
  <descriptions>
    <description descriptionType="Abstract">&lt;p&gt;This paper describes the author&amp;#39;s participation in the 3rd edition of the Machine Learning Security Evasion Competition (MLSEC-2021) sponsored by CUJO AI, VM-Ray, MRG-Effitas, Nvidia and Microsoft. As in the previous year the goal was not only developing measures against adversarial attacks on a pre-defined set of malware samples but also finding ways of bypassing other teams&amp;#39; defenses in a simulated cloud environment. The submitted solutions were ranked second in both defender and attacker tracks.&lt;/p&gt;</description>
  </descriptions>
</resource>
339
220
views
downloads
All versions This version
Views 339339
Downloads 220220
Data volume 18.6 MB18.6 MB
Unique views 279279
Unique downloads 199199

Share

Cite as