Journal article Open Access

Hand Motion Analysis using CNN

Harsh Raj; Aditya Duggal; Aditya Kumar Shetty M; Sreekanth Uppara; Srividya M S


MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="http://www.loc.gov/MARC21/slim">
  <leader>00000nam##2200000uu#4500</leader>
  <datafield tag="041" ind1=" " ind2=" ">
    <subfield code="a">eng</subfield>
  </datafield>
  <datafield tag="653" ind1=" " ind2=" ">
    <subfield code="a">Convolutional Neural Network, Human Computer Interaction, Robust, Testing accuracy</subfield>
  </datafield>
  <controlfield tag="005">20210928134828.0</controlfield>
  <controlfield tag="001">5533623</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dept. of Computer Science and Engineering, R.V. College  of Engineering, Bengaluru, India.</subfield>
    <subfield code="a">Aditya Duggal</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dept. of Computer Science and Engineering, R.V. College  of Engineering, Bengaluru, India.</subfield>
    <subfield code="a">Aditya Kumar Shetty M</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dept. of Computer Science and Engineering, R.V. College  of Engineering, Bengaluru, India.</subfield>
    <subfield code="a">Sreekanth Uppara</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Dept. of Computer Science and Engineering, R.V. College  of Engineering, Bengaluru, India.</subfield>
    <subfield code="a">Srividya M S</subfield>
  </datafield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="u">Publisher</subfield>
    <subfield code="4">spn</subfield>
    <subfield code="a">Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)</subfield>
  </datafield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">412699</subfield>
    <subfield code="z">md5:711e2490fc6990d1d9bda9375052aa1e</subfield>
    <subfield code="u">https://zenodo.org/record/5533623/files/F3409039620.pdf</subfield>
  </datafield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  </datafield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-05-30</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o">oai:zenodo.org:5533623</subfield>
  </datafield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="c">26-30</subfield>
    <subfield code="n">6</subfield>
    <subfield code="p">International Journal of Soft Computing and Engineering (IJSCE)</subfield>
    <subfield code="v">9</subfield>
  </datafield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="u">Dept. of Computer Science and Engineering, R.V. College  of Engineering, Bengaluru, India.</subfield>
    <subfield code="a">Harsh Raj</subfield>
  </datafield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Hand Motion Analysis using CNN</subfield>
  </datafield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="u">https://creativecommons.org/licenses/by/4.0/legalcode</subfield>
    <subfield code="a">Creative Commons Attribution 4.0 International</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2">opendefinition.org</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">ISSN</subfield>
    <subfield code="0">(issn)2231-2307</subfield>
  </datafield>
  <datafield tag="650" ind1="1" ind2=" ">
    <subfield code="a">Retrieval Number</subfield>
    <subfield code="0">(handle)F3409039620/2020©BEIESP</subfield>
  </datafield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">&lt;p&gt;Hand motion detection and gesture recognition research has attracted large interest due to its wide range of applications in the field of Human computer interaction such as sign language recognition, 3D printing, virtual reality. There have been several approaches to create a robust algorithm to ease human computer interaction and perform in unfavourable environments.The real time recognition and learning of the model are big challenges. In this work, we use Convolutional Neural Network architecture to detect and classify hand motions, the region of interest of the image is passed through the neural network for the hand motion analysis and detection.Our system has achieved testing accuracy of 98%.&lt;/p&gt;</subfield>
  </datafield>
  <datafield tag="773" ind1=" " ind2=" ">
    <subfield code="n">issn</subfield>
    <subfield code="i">isCitedBy</subfield>
    <subfield code="a">2231-2307</subfield>
  </datafield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.35940/ijsce.F3409.059620</subfield>
    <subfield code="2">doi</subfield>
  </datafield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
  </datafield>
</record>
8
5
views
downloads
Views 8
Downloads 5
Data volume 2.1 MB
Unique views 8
Unique downloads 5

Share

Cite as