Dataset Open Access
Maksim Gomanko
{ "files": [ { "links": { "self": "https://zenodo.org/api/files/a2f9dfd0-0222-4742-b46c-3de16302a670/Data%20processing.zip" }, "checksum": "md5:7a827ce0e80864457c9766af29a8ef28", "bucket": "a2f9dfd0-0222-4742-b46c-3de16302a670", "key": "Data processing.zip", "type": "zip", "size": 4661178 }, { "links": { "self": "https://zenodo.org/api/files/a2f9dfd0-0222-4742-b46c-3de16302a670/Data%20summaries.zip" }, "checksum": "md5:86c81376a10e848ccb61a98d207b2bd7", "bucket": "a2f9dfd0-0222-4742-b46c-3de16302a670", "key": "Data summaries.zip", "type": "zip", "size": 94634513 }, { "links": { "self": "https://zenodo.org/api/files/a2f9dfd0-0222-4742-b46c-3de16302a670/Measurement%20notebooks.zip" }, "checksum": "md5:f057c1791058065cb92d9d6b5bfd1ece", "bucket": "a2f9dfd0-0222-4742-b46c-3de16302a670", "key": "Measurement notebooks.zip", "type": "zip", "size": 37031484 }, { "links": { "self": "https://zenodo.org/api/files/a2f9dfd0-0222-4742-b46c-3de16302a670/RawData.zip" }, "checksum": "md5:5182de0beaf4bcab75dd57a4a940b422", "bucket": "a2f9dfd0-0222-4742-b46c-3de16302a670", "key": "RawData.zip", "type": "zip", "size": 298028005 }, { "links": { "self": "https://zenodo.org/api/files/a2f9dfd0-0222-4742-b46c-3de16302a670/Readme%20general.txt" }, "checksum": "md5:4066a46f2e2844b3208dca73b1ad67d7", "bucket": "a2f9dfd0-0222-4742-b46c-3de16302a670", "key": "Readme general.txt", "type": "txt", "size": 2561 } ], "owners": [ 256159 ], "doi": "10.5281/zenodo.5531917", "stats": { "version_unique_downloads": 4.0, "unique_views": 60.0, "views": 62.0, "version_views": 62.0, "unique_downloads": 4.0, "version_unique_views": 60.0, "volume": 439021480.0, "version_downloads": 7.0, "downloads": 7.0, "version_volume": 439021480.0 }, "links": { "doi": "https://doi.org/10.5281/zenodo.5531917", "conceptdoi": "https://doi.org/10.5281/zenodo.5531916", "bucket": "https://zenodo.org/api/files/a2f9dfd0-0222-4742-b46c-3de16302a670", "conceptbadge": "https://zenodo.org/badge/doi/10.5281/zenodo.5531916.svg", "html": "https://zenodo.org/record/5531917", "latest_html": "https://zenodo.org/record/5531917", "badge": "https://zenodo.org/badge/doi/10.5281/zenodo.5531917.svg", "latest": "https://zenodo.org/api/records/5531917" }, "conceptdoi": "10.5281/zenodo.5531916", "created": "2021-11-25T23:34:37.988167+00:00", "updated": "2021-11-26T11:15:27.707188+00:00", "conceptrecid": "5531916", "revision": 3, "id": 5531917, "metadata": { "access_right_category": "success", "doi": "10.5281/zenodo.5531917", "description": "<p>This repository contains combined data for two papers. </p>\n\n<p>Growth of PbTe nanowires by Molecular Beam Epitaxy<br>\nAuthors: Sander G. Schellingerhout, Eline J. de Jong, Maksim Gomanko, Xin Guan, Yifan Jiang, Max S.M. Hoskam,<br>\nSebastian Koelling, Oussama Moutanabbir, Marcel A. Verheijen, Sergey M. Frolov, Erik P.A.M. Bakkers</p>\n\n<p><br>\nSpin and Orbital Spectroscopy in the Absence of Coulomb Blockade in Lead Telluride Nanowire Quantum Dots<br>\nAuthors: M. Gomanko, E.J. de Jong, Y. Jiang, S.G. Schellingerhout, E.P.A.M. Bakkers, and S.M. Frolov</p>\n\n<p><br>\nContent of this repository: </p>\n\n<p>Readme file. </p>\n\n<p>/RawData/<br>\nOriginal data obtained at the time of measurement separated into 3 folders from different chips/cooldowns<br>\nData from devices 1,3 and 4 can be found in "RawData/PbTe_chip1", device 2 in "RawData/PbTe_chip2" and devices 5-8 in "RawData/PbTe_GBg"</p>\n\n<p>/Measurement notebooks/<br>\nOneNote notebook with 4 different sections for 3 chips (two sections for backgate chip). Pages in these sections contain the device number in the name.<br>\nAlso, the same notebook is exported in pdf format for convenience.</p>\n\n<p>/Data processing/<br>\nReadme file, Jupiter notebooks, data files, and pictures, that were used to extract g-factors for different field orientations in device2.</p>\n\n<p>/Data summaries/<br>\nPowerpoints, that were used to overview data during the measurement stage.<br>\nNot all data from these powerpoints are present in the repository or paper (specifically excluding early data used in "additional backgate devices.pptx" and "PbTe 3rd device.pptx").</p>\n\n<p>Data file types:</p>\n\n<p>data_NNN.dat - the original data file obtained at the time of the experiment<br>\ndataNNN.py - the original QTLab data acquisition script saved with data<br>\ndata_NNN.set - settings of measurement instruments at the time of measurement<br>\ndata_NNN.meta - auxillary file necessary for plotting data using SpyView (see below) <br>\ndata_NNN.MTX - a simple 2D/3D matrix format developed for Spyview</p>\n\n<p>NNN stands for dataset number, automatically indexed by QTLab</p>\n\n<p><br>\nHow to plot data:</p>\n\n<p>1) Spyview - a free data plotting program written by Gary Steele</p>\n\n<p>Data in this repository can be simply dropped into Spyview for plotting. </p>\n\n<p>Spyview also produces and can read .mtx files which are available for some of the data in this repository.</p>\n\n<p>https://nsweb.tn.tudelft.nl/~gsteele/spyview/</p>\n\n<p><br>\n2) QTPlot - a Python plotter written by Ruben van Gulik</p>\n\n<p>Data in this repository can be directly opened with QTPlot, which will read axis labels.</p>\n\n<p>https://github.com/Rubenknex/qtplot</p>\n\n<p>Note: requires PyQT4</p>", "language": "eng", "title": "Data and Code for Spin and Orbital Spectroscopy in the Absence of Coulomb Blockade in Lead Telluride Nanowire Quantum Dots", "license": { "id": "CC-BY-4.0" }, "relations": { "version": [ { "count": 1, "index": 0, "parent": { "pid_type": "recid", "pid_value": "5531916" }, "is_last": true, "last_child": { "pid_type": "recid", "pid_value": "5531917" } } ] }, "version": "1.0", "communities": [ { "id": "frolovlab" } ], "publication_date": "2021-11-25", "creators": [ { "affiliation": "University of Pittsburgh", "name": "Maksim Gomanko" } ], "access_right": "open", "resource_type": { "type": "dataset", "title": "Dataset" }, "related_identifiers": [ { "scheme": "doi", "identifier": "10.5281/zenodo.5531916", "relation": "isVersionOf" } ] } }
All versions | This version | |
---|---|---|
Views | 62 | 62 |
Downloads | 7 | 7 |
Data volume | 439.0 MB | 439.0 MB |
Unique views | 60 | 60 |
Unique downloads | 4 | 4 |