XPP model

This model was converted from XPP ode format to SBML using sbmlutils-0.1.5a6.

# AP-sim-Ca.ode

" Ref: Brown AM (2003) Computer Methods and Programs in Biomedicine 71:25-31.
init v=-71, m=0.000734, h=0.726655, n=0.001932, mca=0.003016
param gnabar=20, gkbar=2.0, gkleak=0.007, gnaleak=0.00265, Cao=1, Cai=50e-6, Pca=0.08
param ena=45, ek=-105, Cm=1, z=2
number rgas=8.315, temp=298, faraday=96480
param ton=3, toff=4, ipulse=40
Io=ipulse*heav(t-ton)*heav(toff-t)

am = 0.091*(v+38)/(1-exp(-(v+38)/5))
bm = -0.062*(v+38)/(1-EXP((v+38)/5))
ah = 0.016*EXP((-55-v)/15)
bh = 2.07/(EXP((17-v)/21)+1)
an = 0.01*(-45-v)/(EXP((-45-v)/5)-1)
bn = 0.17*EXP((-50-v)/40)
amca = 1.6/(1+EXP(-0.072*(v-5)))
bmca = 0.02*(v-1.31)/(EXP((v-1.31)/5.36)-1)

ina = gnabar*(m*m*m)*h*(v-ena)
ik = gkbar*(n^4)*(v-ek)
ica = ((mca^2)*Pca*2e-3*2*v*(faraday^2)/(rgas*temp*1000))* \
(Cai-Cao*exp(-z*faraday*v/(rgas*temp*1000)))/(1-exp(-z*faraday*v/(rgas*temp*1000)))
ikleak = gkleak*(v-ek)
inaleak = gnaleak*(v-ena)

dm/dt = am*(1-m) - bm*m
dh/dt = ah*(1-h) - bh*h
dn/dt = an*(1-n) - bn*n
dmca/dt = amca*(1-mca) - bmca*mca
dv/dt = (-ina-ik-ica-ikleak-inaleak+Io)/Cm

aux ina=ina
aux ik=ik
aux ica=ica

#  Numerical and plotting parameters for xpp
@ meth=Euler, dt=0.01, total=20, xlo=0, xhi=20, ylo=-80, yhi=60
@ bounds=100000
@ xp=t, yp=v
done
This file has been produced by sbmlutils.

Terms of use

Copyright © 2017 Matthias Koenig

Redistribution and use of any part of this model, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of this SBML file must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in a different form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


Model :

id
name
time
substance
extent
volume
area
length
Access SBML model  L3V1

FunctionDefinitions [4] name math sbo cvterm
max minimum x y x x y y
min maximum x y x x y y
heav heavyside x 0 x 0 0.5 x 0 1 x 0 0
mod modulo x y x y x y x 0 y 0 x y x y

Parameters [37] name constant value unit derived unit sbo cvterm
v v = -71 -71.0 None
m m = 0.000734 0.000734 None
h h = 0.726655 0.726655 None
n n = 0.001932 0.001932 None
mca mca = 0.003016 0.003016 None
gnabar gnabar = 20 20.0 None
gkbar gkbar = 2.0 2.0 None
gkleak gkleak = 0.007 0.007 None
gnaleak gnaleak = 0.00265 0.00265 None
cao cao = 1 1.0 None
cai cai = 50e-6 5e-05 None
pca pca = 0.08 0.08 None
ena ena = 45 45.0 None
ek ek = -105 -105.0 None
cm cm = 1 1.0 None
z z = 2 2.0 None
rgas rgas = 8.315 8.315 None
temp temp = 298 298.0 None
faraday faraday = 96480 96480.0 None
ton ton = 3 3.0 None
toff toff = 4 4.0 None
ipulse ipulse = 40 40.0 None
io 0.0 dimensionless None
am 0.0 dimensionless None
bm 0.0 dimensionless None
ah 0.0 dimensionless None
bh 0.0 dimensionless None
an 0.0 dimensionless None
bn 0.0 dimensionless None
amca 0.0 dimensionless None
bmca 0.0 dimensionless None
ina 0.0 dimensionless None
ik 0.0 dimensionless None
ica 0.0 dimensionless None
ikleak 0.0 dimensionless None
inaleak 0.0 dimensionless None
t model time 0.0 dimensionless None

Rules [20]   assignment name derived units sbo cvterm
d m/dt = am 1 m bm m None
d h/dt = ah 1 h bh h None
d n/dt = an 1 n bn n None
d mca/dt = amca 1 mca bmca mca None
d v/dt = ina ik ica ikleak inaleak io cm None
io = ipulse heav t ton heav toff t None
am = 0.091 v 38 1 v 38 5 None
bm = 0.062 v 38 1 v 38 5 None
ah = 0.016 55 v 15 None
bh = 2.07 17 v 21 1 None
an = 0.01 45 v 45 v 5 1 None
bn = 0.17 50 v 40 None
amca = 1.6 1 0.072 v 5 None
bmca = 0.02 v 1.31 v 1.31 5.36 1 None
ina = gnabar m m m h v ena None
ik = gkbar n 4 v ek None
ica = mca 2 pca 2 -3 2 v faraday 2 rgas temp 1000 cai cao z faraday v rgas temp 1000 1 z faraday v rgas temp 1000 None
ikleak = gkleak v ek None
inaleak = gnaleak v ena None
t = time None