XPP model

This model was converted from XPP ode format to SBML using sbmlutils-0.1.5a6.

#### Implemented by Tim C. Whalen (tim@timcwhalen.com) Mar 2016
### Conductance-based model of pallidostriatal microcircuit
### Connects FSI model from Golomb et al 2007, GPe model from
### Fujita 2011, and MSN model from Mahon 2000, with minor changes
### Adds GABA synapses, passive excitation (constant or oscillating, line 686)

### TO RUN:
## In control case, change last table to "conntableF2Mv3.txt"
##             set DD = 0
## In DD case, change last table to "conntableF2MDDv3.txt"
##             set DD = 1
##
## Change "v3" to v1 or v2 to use other connectivity tables
## Table files should be in XPP home directory
## In command line, execute "xppaut Corbit_2016_basic_PS.ode -silent"
## Output will be .dat file with filename specified in option at end of file
## .dat file contains one row for each timestep, with columns "t MV1..40 GV1..8 FV1..8"
##
## Note that initial conditions are set randomly near end of file where ODEs appear

### Connectivity Tables ###
table con_m2m conntableM2Mv3.txt
table con_g2g conntableG2Gv3.txt
table con_f2f conntableF2Fv3.txt
table con_m2g conntableM2Gv3.txt
table con_g2f conntableG2Fv3.txt
table con_f2m conntableF2Mv3.txt

p DD = 0

### Global Functions
# Function for steady states - additional "min" parameter acts as partial inactivation
INFF(VV,theta,sigma,minx) = minx + (1.0-minx)/(1.0+exp((theta-VV)/sigma))


### MSN's ###

## Time constant calculations
# Inc. 1/tadj_fac as necessary for current to adjust to 37 from exp. temp
MTADJF(temp0) = Mq10^((Mtemp1-temp0)/10)
MTAUF_OMP(V,tau0,Vtau,ktau) = tau0/(exp(-(V-Vtau)/ktau)+exp((V-Vtau)/ktau))
# Constants for temperature adjustment. Temps in C
p Mq10 = 2.5
p Mtemp1 = 37

# Capacitance, uF/cm^2
p MCm = 1

## Current values/functions ##
# All currents in uA/cm^2
#     conductances in mS/cm^2
#     potentials in mV
#     time in ms
# Gating IC's rounded to nearest 0.05 to steady state value at given voltage IC, except when noted

## Applied current
# Values previously used for excitation; now replaced with passive channel
p MIapp = 0

## Leak Current; passive
p MV_L = -90
p Mg_leak = .075

## Na Current (exception; also no temp change)
p MV_na = 55
p Mg_na = 35

p MVa_m_na = -28,		MKa_m_na = 1
p MVb_m_na = -53,   	MKb_m_na = 18

p MVa_h_na = -51,		MKa_h_na = 20
p MVb_h_na = -21,   	MKb_h_na = 1
p Mph_h_na = 5

Ma_m_na[1..40] = (-0.1*(MV[j]-MVa_m_na)/MKa_m_na/(exp(-0.1*(MV[j]-MVa_m_na)/MKa_m_na)-1))
Mb_m_na[1..40] = 4*exp(-(MV[j]-MVb_m_na)/MKb_m_na)
Ma_h_na[1..40] = 0.07*exp(-(MV[j]-MVa_h_na)/MKa_h_na)
Mb_h_na[1..40] = 1/(1+exp(-0.1*(MV[j]-MVb_h_na)/MKb_h_na))

Mm_na[1..40] = Ma_m_na[j]/(Ma_m_na[j]+Mb_m_na[j])
aux Mm_naa[1..40] = Mm_na[j]

Mhnf_na[1..40] = Ma_h_na[j]/(Ma_h_na[j]+Mb_h_na[j])
Mh_na[1..40](0) = 1
Mh_na[1..40]' = Mph_h_na*(Ma_h_na[j]*(1-Mh_na[j])-Mb_h_na[j]*Mh_na[j])

## K Current (exception; also no temp change)
p MV_k = -90
p Mg_k = 6

p MVa_n_k = -27,	MKa_n_k = 1
p MVb_n_k = -37,   	MKb_n_k = 80
p Mph_n_k = 5

Ma_n_k[1..40] = (-0.01*(MV[j]-MVa_n_k)/MKa_n_k/(exp(-0.1*(MV[j]-MVa_n_k)/MKa_n_k)-1))
Mb_n_k[1..40] = 0.125*exp(-(MV[j]-MVb_n_k)/MKb_n_k)
Mnnf_k[1..40] = Ma_n_k[j]/(Ma_n_k[j]+Mb_n_k[j])
Mn_k[1..40](0) = 0
Mn_k[1..40]'=Mph_n_k*(Ma_n_k[j]*(1-Mn_k[j])-Mb_n_k[j]*Mn_k[j])

## Kir Current
p MV_kir = -90
p Mg_kir = 0.15

# activation approximately instantaneous; no temp dependence
p Mth_m_kir = -100,	Mk_m_kir = -10 
p MT0_m_kir = .01

MT_m_kir = MT0_m_kir
Mmnf_kir[1..40] = INFF(MV[j],Mth_m_kir,Mk_m_kir,0)
Mm_kir[1..40](0) = 0
Mm_kir[1..40]' = (Mmnf_kir[j] - Mm_kir[j])/MT_m_kir

## Kaf Current
p MV_kaf = -73
p Mg_kaf = .09
p Mtemp_kaf = 22

p Mth_m_kaf = -33.1,	Mk_m_kaf = 7.5
p MT0_m_kaf = 1.0

p Mth_h_kaf = -70.4,	Mk_h_kaf = -7.6
p MT0_h_kaf = 25.0

MT_m_kaf = MT0_m_kaf/MTADJF(Mtemp_kaf)
Mmnf_kaf[1..40] = INFF(MV[j],Mth_m_kaf,Mk_m_kaf,0)
Mm_kaf[1..40](0) = 0
Mm_kaf[1..40]' = (Mmnf_kaf[j] - Mm_kaf[j])/MT_m_kaf

MT_h_kaf = MT0_h_kaf/MTADJF(Mtemp_kaf)
Mhnf_kaf[1..40] = INFF(MV[j],Mth_h_kaf,Mk_h_kaf,0)
Mh_kaf[1..40](0) = .73
Mh_kaf[1..40]' = (Mhnf_kaf[j] - Mh_kaf[j])/MT_h_kaf

# Proportionality constant between m_Kaf ove r m_K
aux MK_o_Kaf[1..40] = Mn_k[j]/Mm_Kaf[j]
aux MK_m_Kaf[1..40] = Mn_k[j]-Mm_Kaf[j]

## Kas Current
p MV_kas = -85
p Mg_kas = .32
p Mtemp_kas = 22

p Mth_m_kas = -25.6,	Mk_m_kas = 13.3
p MT0_m_kas = 131.4
p MvT_m_kas = -37.4,	MkT_m_kas = 27.3

p Mth_h_kas = -78.8,	Mk_h_kas = -10.4
p MvT_h_kas = -38.2,	MkT_h_kas = 28

MT_m_kas[1..40] = MTAUF_OMP(MV[j],MT0_m_kas,MvT_m_kas,MkT_m_kas)/MTADJF(Mtemp_kas)
Mmnf_kas[1..40] = INFF(MV[j],Mth_m_kas,Mk_m_kas,0)
Mm_kas[1..40](0) = 0
Mm_kas[1..40]' = (Mmnf_kas[j] - Mm_kas[j])/MT_m_kas[j]

# exception for h_kas tau
MT_h_kas[1..40] = (1790+2930*exp(-((MV[j]-MvT_h_kas)/MkT_h_kas)^2)*((MV[j]-MvT_h_kas)/MkT_h_kas))/MTADJF(Mtemp_kas)
Mhnf_kas[1..40] = INFF(MV[j],Mth_h_kas,Mk_h_kas,0)
# IC from Mahon code
Mh_kas[1..40](0) = .46
Mh_kas[1..40]' = (Mhnf_kas[j] - Mh_kas[j])/MT_h_kas[j]

## Krp Current
p MV_krp = -77.5
p Mg_krp = 0.42
p Mtemp_krp = 22

p Mth_m_krp = -13.4,	Mk_m_krp = 12.1
p MT0_m_krp = 206.2
p MvT_m_krp = -53.9,	MkT_m_krp = 26.5

p Mth_h_krp = -55.0,	Mk_h_krp = -19.0
p MvT_h_krp = -38.2,	MkT_h_krp = 28

MT_m_krp[1..40] = MTAUF_OMP(MV[j],MT0_m_krp,MvT_m_krp,MkT_m_krp)/MTADJF(Mtemp_krp)
Mmnf_krp[1..40] = INFF(MV[j],Mth_m_krp,Mk_m_krp,0)
Mm_krp[1..40](0) = 0
Mm_krp[1..40]' = (Mmnf_krp[j] - Mm_krp[j])/MT_m_krp[j]

# exception for h_krp tau
MT_h_krp[1..40] = 3*(1790+2930*exp(-((MV[j]-MvT_h_krp)/MkT_h_krp)^2)*((MV[j]-MvT_h_krp)/MkT_h_krp))/MTADJF(Mtemp_krp)
Mhnf_krp[1..40] = INFF(MV[j],Mth_h_krp,Mk_h_krp,0)
# IC from Mahon code
Mh_krp[1..40](0) = .7647
Mh_krp[1..40]' = (Mhnf_krp[j] - Mh_krp[j])/MT_h_krp[j]

## NaP Current
p MV_nap = 45
p Mg_nap = 0.02
p Mtemp_nap = 22

p Mth_m_nap = -47.8,	Mk_m_nap = 3.1
p MT0_m_nap = 1.0

MT_m_nap = MT0_m_nap/MTADJF(Mtemp_nap)
Mmnf_nap[1..40] = INFF(MV[j],Mth_m_nap,Mk_m_nap,0)
Mm_nap[1..40](0) = 0
Mm_nap[1..40]' = (Mmnf_nap[j] - Mm_nap[j])/MT_m_nap

## NaS Current
p MV_nas = 40
p Mg_nas = 0.11
p Mtemp_nas = 21

p Mth_m_nas = -16.0,	Mk_m_nas = 9.4
p MT0_m_nas = 637.8
p MvT_m_nas = -33.5,	MkT_m_nas = 26.3

MT_m_nas[1..40] = MTAUF_OMP(MV[j],MT0_m_nas,MvT_m_nas,MkT_m_nas)/MTADJF(Mtemp_nas)
Mmnf_nas[1..40] = INFF(MV[j],Mth_m_nas,Mk_m_nas,0)
Mm_nas[1..40](0) = 0
Mm_nas[1..40]' = (Mmnf_nas[j] - Mm_nas[j])/MT_m_nas[j]


### GPe Neurons ###

## Time constant calculations
# sigma (Fujita) -> s
GTAUF(VV,tau0,tau1,phi,s0,s1) = tau0 + (tau1-tau0)/(exp((phi-VV)/s0) + exp((phi-VV)/s1))
# For GPe NaP s gate
GTAU_SF(VV,A,B,K) = (A*VV+B)/(1-exp((VV+B/A)/K))

# Capacitance, uF/cm^2
p GCm = 1

## All currents in uA/cm^2
# Applied current
# Previously used for excitation, replaced with passive channel
p GIapp = 0

## Leak Current; passive
p GV_L = -60
# All conductances in mS/cm^2
p Gg_leak = .068 							

# Defaults: mi (min) = 0, ph (phi) = 0, s0,1 = 1

## Na Currents
p GV_Na = 50
## NaF Current
p Gg_naf = 50 								

p Gth_m_naf = -39,		Gk_m_naf = 5.0
p GT0_m_naf = 0.028,	GT1_m_naf = 0.028
p Gph_m_naf = 0,		Gmi_m_naf = 0.0
p Gs0_m_naf = 1,		Gs1_m_naf = 1

p Gth_h_naf = -48,		Gk_h_naf = -2.8
p GT0_h_naf = 0.25,    GT1_h_naf = 4.0
p Gph_h_naf = -43,		Gmi_h_naf = 0.0
p Gs0_h_naf = 10,		Gs1_h_naf = -5.0

p Gth_s_naf = -40,		Gk_s_naf = -5.4
p GT0_s_naf = 10,		GT1_s_naf = 1000
p Gph_s_naf = -40,		Gmi_s_naf = 0.15
p Gs0_s_naf = 18.3,	Gs1_s_naf = -10	

Gmnf_naf[1..8] = INFF(GV[j],Gth_m_naf,Gk_m_naf,Gmi_m_naf)
Ghnf_naf[1..8] = INFF(GV[j],Gth_h_naf,Gk_h_naf,Gmi_h_naf)
Gsnf_naf[1..8] = INFF(GV[j],Gth_s_naf,Gk_s_naf,Gmi_s_naf)
Gm_T_naf[1..8] = GTAUF(GV[j], GT0_m_naf, GT1_m_naf, Gph_m_naf, Gs0_m_naf, Gs1_m_naf)
Gh_T_naf[1..8] = GTAUF(GV[j], GT0_h_naf, GT1_h_naf, Gph_h_naf, Gs0_h_naf, Gs1_h_naf)
Gs_T_naf[1..8] = GTAUF(GV[j], GT0_s_naf, GT1_s_naf, Gph_s_naf, Gs0_s_naf, Gs1_s_naf)
Gm_naf[1..8](0) = 0.02
Gh_naf[1..8](0) = 0.97
Gs_naf[1..8](0) = 0.97
Gm_naf[1..8]' = (Gmnf_naf[j] - Gm_naf[j]) / Gm_T_naf[j]
Gh_naf[1..8]' = (Ghnf_naf[j] - Gh_naf[j]) / Gh_T_naf[j]
Gs_naf[1..8]' = (Gsnf_naf[j] - Gs_naf[j]) / Gs_T_naf[j]

## NaP Current
p Gg_nap = 0.1

p Gth_m_nap = -57.7,	Gk_m_nap = 5.7
p GT0_m_nap = 0.03,	GT1_m_nap = 0.146
p Gph_m_nap = -42.6,	Gmi_m_nap = 0.0
p Gs0_m_nap = 14.4,	Gs1_m_nap = -14.4

p Gth_h_nap = -57,		Gk_h_nap = -4
p GT0_h_nap = 10,		GT1_h_nap = 17
p Gph_h_nap = -34,		Gmi_h_nap = 0.154
p Gs0_h_nap = 26,		Gs1_h_nap = -31.9

# s gate modulated by different eq's;
# REMOVED in reduced version
# p Gth_s_nap = -10,			Gk_s_nap = -4.9
# p Gmi_s_nap = 0
# p GAa_s_nap = -.00000288	GBa_s_nap = -.000049
# p GAb_s_nap = .00000694	GBb_s_nap = .000447
# p GKa_s_nap = 4.63			GKb_s_nap = -2.63

Gmnf_nap[1..8] = INFF(GV[j],Gth_m_nap,Gk_m_nap,Gmi_m_nap)
Ghnf_nap[1..8] = INFF(GV[j],Gth_h_nap,Gk_h_nap,Gmi_h_nap)
#Gsnf_nap[1..8] = INFF(GV[j],Gth_s_nap,Gk_s_nap,Gmi_s_nap)
Gm_T_nap[1..8] = GTAUF(GV[j], GT0_m_nap, GT1_m_nap, Gph_m_nap, Gs0_m_nap, Gs1_m_nap)
Gh_T_nap[1..8] = GTAUF(GV[j], GT0_h_nap, GT1_h_nap, Gph_h_nap, Gs0_h_nap, Gs1_h_nap)
#Gs_T_nap[1..8] = 1/(GTAU_SF(GV[j],GAa_s_nap,GBa_s_nap,GKa_s_nap)+GTAU_SF(GV[j],GAb_s_nap,GBb_s_nap,GKb_s_nap))
Gm_nap[1..8](0) = .48
Gh_nap[1..8](0) = .68
#Gs_nap[1..8](0) = .39
Gm_nap[1..8]' = (Gmnf_nap[j] - Gm_nap[j]) / Gm_T_nap[j]
Gh_nap[1..8]' = (Ghnf_nap[j] - Gh_nap[j]) / Gh_T_nap[j]
#Gs_nap[1..8]' = (Gsnf_nap[j] - Gs_nap[j]) / Gs_T_nap[j]

## K Currents
p GV_K = -90

# Kv2 Current
p Gg_kv2 = 0.1

p Gth_m_kv2 = -33.2,	Gk_m_kv2 = 9.1
p GT0_m_kv2 = 0.1,		GT1_m_kv2 = 3.0
p Gph_m_kv2 = -33.2,	Gmi_m_kv2 = 0.0
p Gs0_m_kv2 = 21.7,	Gs1_m_kv2 = -13.9

p Gth_h_kv2 = -20,		Gk_h_kv2 = -10
p GT0_h_kv2 = 3400,	GT1_h_kv2 = 3400
p Gph_h_kv2 = 0,		Gmi_h_kv2 = 0.2
p Gs0_h_kv2 = 1,		Gs1_h_kv2 = 1

Gmnf_kv2[1..8] = INFF(GV[j],Gth_m_kv2,Gk_m_kv2,Gmi_m_kv2)
Ghnf_kv2[1..8] = INFF(GV[j],Gth_h_kv2,Gk_h_kv2,Gmi_h_kv2)
Gm_T_kv2[1..8] = GTAUF(GV[j], GT0_m_kv2, GT1_m_kv2, Gph_m_kv2, Gs0_m_kv2, Gs1_m_kv2)
Gh_T_kv2[1..8] = GTAUF(GV[j], GT0_h_kv2, GT1_h_kv2, Gph_h_kv2, Gs0_h_kv2, Gs1_h_kv2)
Gm_kv2[1..8](0) = 0.06
Gh_kv2[1..8](0) = 1
Gm_kv2[1..8]' = (Gmnf_kv2[j] - Gm_kv2[j]) / Gm_T_kv2[j]
Gh_kv2[1..8]' = (Ghnf_kv2[j] - Gh_kv2[j]) / Gh_T_kv2[j]

# Kv3 Current
p Gg_kv3 = 10

p Gth_m_kv3 = -26,		Gk_m_kv3 = 7.8
p GT0_m_kv3 = 0.1,		GT1_m_kv3 = 14
p Gph_m_kv3 = -26,		Gmi_m_kv3 = 0
p Gs0_m_kv3 = 13,		Gs1_m_kv3 = -12

p Gth_h_kv3 = -20,		Gk_h_kv3 = -10
p GT0_h_kv3 = 7.0,		GT1_h_kv3 = 33
p Gph_h_kv3 = 0,		Gmi_h_kv3 = 0.6
p Gs0_h_kv3 = 10,		Gs1_h_kv3 = -10

Gmnf_kv3[1..8] = INFF(GV[j],Gth_m_kv3,Gk_m_kv3,Gmi_m_kv3)
Ghnf_kv3[1..8] = INFF(GV[j],Gth_h_kv3,Gk_h_kv3,Gmi_h_kv3)
Gm_T_kv3[1..8] = GTAUF(GV[j], GT0_m_kv3, GT1_m_kv3, Gph_m_kv3, Gs0_m_kv3, Gs1_m_kv3)
Gh_T_kv3[1..8] = GTAUF(GV[j], GT0_h_kv3, GT1_h_kv3, Gph_h_kv3, Gs0_h_kv3, Gs1_h_kv3)
Gm_kv3[1..8](0) = 0.02
Gh_kv3[1..8](0) = 0.99
Gm_kv3[1..8]' = (Gmnf_kv3[j] - Gm_kv3[j]) / Gm_T_kv3[j]
Gh_kv3[1..8]' = (Ghnf_kv3[j] - Gh_kv3[j]) / Gh_T_kv3[j]


# Kv4f Current
# COMBINED into Kv4s in reduced version
# p Gg_kvf = 2.0

# p Gth_m_kvf = -49,		Gk_m_kvf = 12.5
# p GT0_m_kvf = 0.25,		GT1_m_kvf = 7.0
# p Gph_m_kvf = -49,		Gmi_m_kvf = 0
# p Gs0_m_kvf = 29,		Gs1_m_kvf = -29

# p Gth_h_kvf = -83,		Gk_h_kvf = -10
# p GT0_h_kvf = 7.0,		GT1_h_kvf = 21
# p Gph_h_kvf = -83,		Gmi_h_kvf = 0
# p Gs0_h_kvf = 10,		Gs1_h_kvf = -10

# Gmnf_kvf[1..8] = INFF(GV[j],Gth_m_kvf,Gk_m_kvf,Gmi_m_kvf)
# Ghnf_kvf[1..8] = INFF(GV[j],Gth_h_kvf,Gk_h_kvf,Gmi_h_kvf)
# Gm_T_kvf[1..8] = GTAUF(GV[j], GT0_m_kvf, GT1_m_kvf, Gph_m_kvf, Gs0_m_kvf, Gs1_m_kvf)
# Gh_T_kvf[1..8] = GTAUF(GV[j], GT0_h_kvf, GT1_h_kvf, Gph_h_kvf, Gs0_h_kvf, Gs1_h_kvf)
# Gm_kvf[1..8](0) = .32
# Gh_kvf[1..8](0) = .08
# Gm_kvf[1..8]' = (Gmnf_kvf[j] - Gm_kvf[j]) / Gm_T_kvf[j]
# Gh_kvf[1..8]' = (Ghnf_kvf[j] - Gh_kvf[j]) / Gh_T_kvf[j]

# Kv4s Current (before Kv4s added, g = 1.0)
p Gg_kvs = 3.0

p Gth_m_kvs = -49,		Gk_m_kvs = 12.5
p GT0_m_kvs = 0.25,		GT1_m_kvs = 7.0
p Gph_m_kvs = -49,		Gmi_m_kvs = 0
p Gs0_m_kvs = 29,		Gs1_m_kvs = -29

p Gth_h_kvs = -83,		Gk_h_kvs = -10
# Combined tau's of Kv4f (7-21) and Kv4 (50-121)
p GT0_h_kvs = 15,		GT1_h_kvs = 100
p Gph_h_kvs = -83,		Gmi_h_kvs = 0
p Gs0_h_kvs = 10,		Gs1_h_kvs = -10

Gmnf_kvs[1..8] = INFF(GV[j],Gth_m_kvs,Gk_m_kvs,Gmi_m_kvs)
Ghnf_kvs[1..8] = INFF(GV[j],Gth_h_kvs,Gk_h_kvs,Gmi_h_kvs)
Gm_T_kvs[1..8] = GTAUF(GV[j], GT0_m_kvs, GT1_m_kvs, Gph_m_kvs, Gs0_m_kvs, Gs1_m_kvs)
Gh_T_kvs[1..8] = GTAUF(GV[j], GT0_h_kvs, GT1_h_kvs, Gph_h_kvs, Gs0_h_kvs, Gs1_h_kvs)
Gm_kvs[1..8](0) = .32
Gh_kvs[1..8](0) = .08
Gm_kvs[1..8]' = (Gmnf_kvs[j] - Gm_kvs[j]) / Gm_T_kvs[j]
Gh_kvs[1..8]' = (Ghnf_kvs[j] - Gh_kvs[j]) / Gh_T_kvs[j]

# KCNQ Current (g = .2 in Fujita, altered to better match published traces)
p Gg_kv7 = 0.15

p Gth_m_kv7 = -61,		Gk_m_kv7 = 19.5
p GT0_m_kv7 = 6.7,		GT1_m_kv7 = 100
p Gph_m_kv7 = -61,		Gmi_m_kv7 = 0
p Gs0_m_kv7 = 35,		Gs1_m_kv7 = -25

Gmnf_kv7[1..8] = INFF(GV[j],Gth_m_kv7,Gk_m_kv7,Gmi_m_kv7)
Gm_T_kv7[1..8] = GTAUF(GV[j], GT0_m_kv7, GT1_m_kv7, Gph_m_kv7, Gs0_m_kv7, Gs1_m_kv7)
Gm_kv7[1..8](0) = .53
Gm_kv7[1..8]' = (Gmnf_kv7[j] - Gm_kv7[j]) / Gm_T_kv7[j]

# HCN Current
p GV_hcn = -30
p Gg_hcn = 0.1

p Gth_m_hcn = -76.4,	Gk_m_hcn = -3.3
p GT0_m_hcn = 0,		GT1_m_hcn = 3625
p Gph_m_hcn = -76.4,	Gmi_m_hcn = 0
p Gs0_m_hcn = 6.56,	Gs1_m_hcn = -7.48

Gmnf_hcn[1..8] = INFF(GV[j],Gth_m_hcn,Gk_m_hcn,Gmi_m_hcn)
Gm_T_hcn[1..8] = GTAUF(GV[j], GT0_m_hcn, GT1_m_hcn, Gph_m_hcn, Gs0_m_hcn, Gs1_m_hcn)
Gm_hcn[1..8](0) = 0
Gm_hcn[1..8]' = (Gmnf_hcn[j] - Gm_hcn[j]) / Gm_T_hcn[j]

# CAH Current
p GV_Ca = 130
p Gg_cah = 0.3

p Gth_m_cah = -20,		Gk_m_cah = 7.0
p GT0_m_cah = 0.2,		GT1_m_cah = 0.2
p Gph_m_cah = 0,		Gmi_m_cah = 0
p Gs0_m_cah = 1,		Gs1_m_cah = 1

Gmnf_cah[1..8] = INFF(GV[j],Gth_m_cah,Gk_m_cah,Gmi_m_cah)
Gm_T_cah[1..8] = GTAUF(GV[j], GT0_m_cah, GT1_m_cah, Gph_m_cah, Gs0_m_cah, Gs1_m_cah)
Gm_cah[1..8](0) = 0
Gm_cah[1..8]' = (Gmnf_cah[j] - Gm_cah[j]) / Gm_T_cah[j]

# Current needed to calculate Ca conc.
GI_cah[1..8] = (GV[j]-GV_Ca) * Gg_cah * Gm_cah[j]

# Ca Conc. p's
# cm^-1, surface area / volume, aka gamma
p Gav = 3000
# Faraday constant s*A/mol
p F = 96485
p Z = 2.0
# ms^-1
p Gk_Ca = 0.4
# All concentrations in uM
p Gc_Ca0 = .01,	Gc_Ca50 = 0.35
p Gc_Ca_sat = 5.0
p Hcoeff = 4.6
Gcan[1..8] = (Gc_Ca[j]/10^6)^Hcoeff
!Gcan50 = (Gc_Ca50/10^6)^Hcoeff

Gc_Ca[1..8](0) = .01
Gc_Ca[1..8]' = -GI_cah[j]*Gav/(Z*F) - Gk_Ca*(Gc_Ca[j] - Gc_Ca0)

## KSK Current (Ca-dependent)
p Gg_ksk = 0.4
p Gm_T0_ksk = 4.0,		Gm_T1_ksk = 76

Gmnf_ksk[1..8] = Gcan[j]/(Gcan[j] + Gcan50)
Gm_T_ksk[1..8] = if(Gc_Ca[j]<Gc_Ca_sat) then(Gm_T1_ksk-(Gm_T1_ksk-Gm_T0_ksk)*Gc_Ca[j]/Gc_Ca_sat) else(Gm_T0_ksk) 
Gm_ksk[1..8](0) = 0
Gm_ksk[1..8]' = (Gmnf_ksk[j] - Gm_ksk[j]) / Gm_T_ksk[j]


### FS Interneurons ###
p FC=1.0

## Applied current 
# Previously used for excitaiton; now replaced with passive channel
p FIapp = 0
# Golomb: 3.35

## Leak current
p FV_L = -70.0
p Fg_L = 0.25

## Na Current
p FV_Na = 50.0
p Fg_na = 112.5
p Fth_m_na = -24.0,		Fk_m_na = 11.5
p Fth_h_na = -58.3,		Fk_h_na = -6.7
# Theta and k for tau
p FtT_h_na = -60,		FkT_h_na = -12.0
FT_h_na[1..8] = 0.5+14.0*INFF(FV[j],FtT_h_na,FkT_h_na,0)

Fm_na[1..8] = INFF(FV[j],Fth_m_na,Fk_m_na,0)
Fhnf_na[1..8] = INFF(FV[j],Fth_h_na,Fk_h_na,0)
#Fm_na = Fmnf_na
Fh_na[1..8](0) = 0.8522
Fh_na[1..8]' = (Fhnf_na[j]-Fh_na[j])/FT_h_na[j]

## K Currents
p FV_K=-90.0
## Kv3 Current (delayed rectifier)
p Fg_kv3 = 225.0
p Fth_n_kv3 = -12.4,	Fk_n_kv3=6.8
# Theta and k for tau (a and b sets)
p FtA_n_kv3 = -14.6,	FkA_n_kv3 = -8.6
p FtB_n_kv3 = 1.3,		FkB_n_kv3 = 18.7
FT_n_kv3[1..8] = (0.087+11.4*INFF(FV[j],FtA_n_kv3,FkA_n_kv3,0))*(0.087+11.4*INFF(FV[j],FtB_n_kv3,FkB_n_kv3,0))

Fnnf_kv3[1..8] = INFF(FV[j],Fth_n_kv3,Fk_n_kv3,0)
Fn_kv3[1..8](0) = 0.000208
Fn_kv3[1..8]' = (Fnnf_kv3[j]-Fn_kv3[j])/FT_n_kv3[j]

# Kv1 Current (d-type)
# Conductance chosen to put cell in tonic firing mode (Golomb)
p Fg_Kv1 = 0.1
p Fth_m_kv1 = -50,		Fk_m_kv1 = 20
p Fth_h_kv1 = -70,		Fk_h_kv1 = -6
p FT_m_kv1 = 2, 		FT_h_kv1 = 150,  

Fmnf_kv1[1..8] = INFF(FV[j],Fth_m_kv1,Fk_m_kv1,0)
Fhnf_kv1[1..8] = INFF(FV[j],Fth_h_kv1,Fk_h_kv1,0)
Fm_kv1[1..8](0) = 0.2686
Fh_kv1[1..8](0) = 0.5016
Fm_kv1[1..8]' = (Fmnf_kv1[j]-Fm_kv1[j])/FT_m_kv1
Fh_kv1[1..8]' = (Fhnf_kv1[j]-Fh_kv1[j])/FT_h_kv1


### Synapses ###

# Chloride reversal - condensed since all -80
p V_I = -80

# Heaviside parameters (theta, sigma)
p th_Hg = -57.8,	s_Hg = 2.0

# Synaptic values (functions from Terman et al. 2002)
# Assume all GABA synapses have same time course as G->G
# th_g's adjusted to keep s = 0 pre-spike as desired, with no side-effects
# a & b in ms^-1
# From perspective of pre-synaptic cell:

# Gertler 2008
p g_m2m = .14
p a_m2m = 2.0,			b_m2m = .13
p th_g_m2m = 52

# Bugaysen 2013
p g_g2g = .13
p a_g2g = 2.0,			b_g2g = .09
p th_g_g2g = 47

# Gittis 2010
p g_f2f = .11
p a_f2f = 2.0,			b_f2f = .18
p th_g_f2f = 57

# Miguelez 2012
p g_m2g = .1
p a_m2g = 2.0,			b_m2g = .09
p th_g_m2g = 57

# Corbit 2016
p g_g2f = .13
p a_g2f = 2.0,			b_g2f = .09
p th_g_g2f = 47

# Gittis 2010
p g_f2m = .15
p a_f2m = 2.0,			b_f2m = .1
p th_g_f2m = 57

# INFF used for smooth approximation of Heaviside
s_m2m[1..40]'= a_m2m*INFF(MV[j]-th_g_m2m,th_Hg,s_Hg,0)*(1-s_m2m[j]) - b_m2m*s_m2m[j]
s_g2g[1..8]' = a_g2g*INFF(GV[j]-th_g_g2g,th_Hg,s_Hg,0)*(1-s_g2g[j]) - b_g2g*s_g2g[j]
s_f2f[1..8]' = a_f2f*INFF(FV[j]-th_g_f2f,th_Hg,s_Hg,0)*(1-s_f2f[j]) - b_f2f*s_f2f[j]
s_m2g[1..40]'= a_m2g*INFF(MV[j]-th_g_m2g,th_Hg,s_Hg,0)*(1-s_m2g[j]) - b_m2g*s_m2g[j]
s_g2f[1..8]' = a_g2f*INFF(GV[j]-th_g_g2f,th_Hg,s_Hg,0)*(1-s_g2f[j]) - b_g2f*s_g2f[j]
s_f2m[1..8]' = a_f2m*INFF(FV[j]-th_g_f2m,th_Hg,s_Hg,0)*(1-s_f2m[j]) - b_f2m*s_f2m[j]

## Connectivity
# From perspective of postsynaptic cell, summing synapses from tables at top
i_m2m[1..40]=g_m2m*(MV[j]-V_I)*(sum(0,13)of(shift(s_m2m1,con_m2m(14*([j]-1)+i')-1)))
aux i_m2ma[1..40] = i_m2m[j]
i_g2g[1..8]=g_g2g*(GV[j]-V_I)*(sum(0,1)of(shift(s_g2g1,con_g2g(2*([j]-1)+i')-1)))
aux i_g2ga[1..8] = i_g2g[j]
i_f2f[1..8]=g_f2f*(FV[j]-V_I)*(sum(0,4)of(shift(s_f2f1,con_f2f(5*([j]-1)+i')-1)))
aux i_f2fa[1..8] = i_f2f[j]
i_m2g[1..8]=g_m2g*(GV[j]-V_I)*(sum(0,14)of(shift(s_m2g1,con_m2g(15*([j]-1)+i')-1)))
aux i_m2ga[1..8] = i_m2g[j]
i_g2f[1..8]=g_g2f*(FV[j]-V_I)*(sum(0,2)of(shift(s_g2f1,con_g2f(3*([j]-1)+i')-1)))
aux i_g2fa[1..8] = i_g2f[j]
i_f2m[1..40]=g_f2m*(MV[j]-V_I)*(sum(0,3*DD+2)of(shift(s_f2m1,con_f2m(3*(DD+1)*([j]-1)+i')-1)))
aux i_f2ma[1..40] = i_f2m[j]

### Excitatory Input ###

# x indicates excitatory (cortical or STN)
p V_X = 0

### Passive excitation
## Constant
!g_x2m = .066*(DD==0) + .083*(DD==1)
p g_x2g = 0.02
p g_x2f = .095

### Spike counters (cumulative)
p Mspks[1..40] = 0
global 1 MV[1..40] {Mspks[j] = Mspks[j]+1}
aux Mspksa[1..40] = Mspks[j]

p Gspks[1..8] = 0
global 1 GV[1..8] {Gspks[j] = Gspks[j]+1}
aux Gspksa[1..8] = Gspks[j]

p Fspks[1..8] = 0
global 1 FV[1..8] {Fspks[j] = Fspks[j]+1}
aux Fspksa[1..8] = Fspks[j]

### Population spike counters (cumulative)
aux Mprate = sum(0,39)of(shift(Mspks1,i'))/40
aux Gprate = sum(0,7)of(shift(Gspks1,i'))/8
aux Fprate = sum(0,7)of(shift(Fspks1,i'))/8

### Membrane Potentials ###
MV[1..40](0)=ran(40)-80
MV[1..40]'=1/MCm*(MIapp  \
	-(MV[j]-MV_L)  	* Mg_leak \
	-(MV[j]-MV_na) 	* Mg_na  * Mm_na[j]^3  * Mh_na[j] \
	-(MV[j]-MV_k)  	* Mg_k   * Mn_k[j]^4 \
	-(MV[j]-MV_kir)	* Mg_kir * Mm_kir[j] \
	-(MV[j]-MV_kaf)	* Mg_kaf * Mm_kaf[j] * Mh_kaf[j] \
	-(MV[j]-MV_kas)	* Mg_kas * Mm_kas[j] * Mh_kas[j] \
	-(MV[j]-MV_krp)	* Mg_krp * Mm_krp[j] * Mh_krp[j] \
	-(MV[j]-MV_nap)	* Mg_nap * Mm_nap[j] \
	-(MV[j]-MV_nas)	* Mg_nas * Mm_nas[j] \
	-i_m2m[j] \
	-i_f2m[j] \
	-(MV[j]-V_X)  * g_x2m)

GV[1..8](0)=ran(40)-80
GV[1..8]'= 1/GCm* (GIapp  \
	-(GV[j]-GV_L)  * Gg_leak \
	-(GV[j]-GV_Na) * Gg_naf * Gm_naf[j]^3 * Gh_naf[j] * Gs_naf[j] \
	-(GV[j]-GV_Na) * Gg_nap * Gm_nap[j]^3 * Gh_nap[j] \
    -(GV[j]-GV_K)  * Gg_kv2 * Gm_kv2[j]^4 * Gh_kv2[j] \
	-(GV[j]-GV_K)  * Gg_kv3 * Gm_kv3[j]^4 * Gh_kv3[j] \
	-(GV[j]-GV_K)  * Gg_kvs * Gm_kvs[j]^4 * Gh_kvs[j] \
	-(GV[j]-GV_K)  * Gg_kv7 * Gm_kv7[j]^4 \
	-(GV[j]-GV_hcn)* Gg_hcn * Gm_hcn[j] \
	-GI_cah[j] \
	-(GV[j]-GV_K)  * Gg_ksk * Gm_ksk[j] \
	-i_g2g[j] \
	-i_m2g[j] \
	-(GV[j]-V_X)  * g_x2g)
	
FV[1..8](0)=ran(40)-80
FV[1..8]' = 1/FC * (FIapp \
	-(FV[j]-FV_L)	* Fg_L \
	-(FV[j]-FV_Na)	* Fg_Na  * Fm_na[j]^3  * Fh_na[j] \
	-(FV[j]-FV_K)	* Fg_Kv3 * Fn_kv3[j]^2 \
	-(FV[j]-FV_k)	* Fg_kv1 * Fm_kv1[j]^3 * Fh_kv1[j] \
	-i_f2f[j] \
	-i_g2f[j] \
	-(FV[j]-V_X)  * g_x2f)
	
# Add more desired output variables here
only t
only MV[1..40]
only GV[1..8]
only FV[1..8]
	
# XPP options for command line run
@ OUTPUT=tcw031016_basic_all_9_cont_tab3.dat
@ TOTAL=2000
@ BOUND=10000
@ METH=qualrk
@ MAXSTOR=100000
@ TRANS=0
@ DT=.1000
@ XP=t,YP=MV1,XLO=0,XHI=2000,YLO=-80,YHI=20
This file has been produced by sbmlutils.

Terms of use

Copyright © 2017 Matthias Koenig

Redistribution and use of any part of this model, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of this SBML file must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in a different form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


Model :

id
name
time
substance
extent
volume
area
length
Access SBML model  L3V1

FunctionDefinitions [9] name math sbo cvterm
max minimum x y x x y y
min maximum x y x x y y
heav heavyside x 0 x 0 0.5 x 0 1 x 0 0
mod modulo x y x y x y x 0 y 0 x y x y
inff vv theta sigma minx minx 1 minx 1 theta vv sigma
mtadjf temp0 mq10 mtemp1 mq10 mtemp1 temp0 10
mtauf_omp v tau0 vtau ktau tau0 v vtau ktau v vtau ktau
gtauf vv tau0 tau1 phi s0 s1 tau0 tau1 tau0 phi vv s0 phi vv s1
gtau_sf vv a b k a vv b 1 vv b a k

Parameters [443] name constant value unit derived unit sbo cvterm
dd dd = 0 0.0 None
mq10 mq10 = 2.5 2.5 None
mtemp1 mtemp1 = 37 37.0 None
mcm mcm = 1 1.0 None
miapp miapp = 0 0.0 None
mv_l mv_l = -90 -90.0 None
mg_leak mg_leak = .075 0.075 None
mv_na mv_na = 55 55.0 None
mg_na mg_na = 35 35.0 None
mva_m_na mva_m_na = -28 -28.0 None
mka_m_na mka_m_na = 1 1.0 None
mvb_m_na mvb_m_na = -53 -53.0 None
mkb_m_na mkb_m_na = 18 18.0 None
mva_h_na mva_h_na = -51 -51.0 None
mka_h_na mka_h_na = 20 20.0 None
mvb_h_na mvb_h_na = -21 -21.0 None
mkb_h_na mkb_h_na = 1 1.0 None
mph_h_na mph_h_na = 5 5.0 None
mh_na[1..40] = 1 1.0 None
mv_k mv_k = -90 -90.0 None
mg_k mg_k = 6 6.0 None
mva_n_k mva_n_k = -27 -27.0 None
mka_n_k mka_n_k = 1 1.0 None
mvb_n_k mvb_n_k = -37 -37.0 None
mkb_n_k mkb_n_k = 80 80.0 None
mph_n_k mph_n_k = 5 5.0 None
mn_k[1..40] = 0 0.0 None
mv_kir mv_kir = -90 -90.0 None
mg_kir mg_kir = 0.15 0.15 None
mth_m_kir mth_m_kir = -100 -100.0 None
mk_m_kir mk_m_kir = -10 -10.0 None
mt0_m_kir mt0_m_kir = .01 0.01 None
mm_kir[1..40] = 0 0.0 None
mv_kaf mv_kaf = -73 -73.0 None
mg_kaf mg_kaf = .09 0.09 None
mtemp_kaf mtemp_kaf = 22 22.0 None
mth_m_kaf mth_m_kaf = -33.1 -33.1 None
mk_m_kaf mk_m_kaf = 7.5 7.5 None
mt0_m_kaf mt0_m_kaf = 1.0 1.0 None
mth_h_kaf mth_h_kaf = -70.4 -70.4 None
mk_h_kaf mk_h_kaf = -7.6 -7.6 None
mt0_h_kaf mt0_h_kaf = 25.0 25.0 None
mm_kaf[1..40] = 0 0.0 None
mh_kaf[1..40] = .73 0.73 None
mv_kas mv_kas = -85 -85.0 None
mg_kas mg_kas = .32 0.32 None
mtemp_kas mtemp_kas = 22 22.0 None
mth_m_kas mth_m_kas = -25.6 -25.6 None
mk_m_kas mk_m_kas = 13.3 13.3 None
mt0_m_kas mt0_m_kas = 131.4 131.4 None
mvt_m_kas mvt_m_kas = -37.4 -37.4 None
mkt_m_kas mkt_m_kas = 27.3 27.3 None
mth_h_kas mth_h_kas = -78.8 -78.8 None
mk_h_kas mk_h_kas = -10.4 -10.4 None
mvt_h_kas mvt_h_kas = -38.2 -38.2 None
mkt_h_kas mkt_h_kas = 28 28.0 None
mm_kas[1..40] = 0 0.0 None
mh_kas[1..40] = .46 0.46 None
mv_krp mv_krp = -77.5 -77.5 None
mg_krp mg_krp = 0.42 0.42 None
mtemp_krp mtemp_krp = 22 22.0 None
mth_m_krp mth_m_krp = -13.4 -13.4 None
mk_m_krp mk_m_krp = 12.1 12.1 None
mt0_m_krp mt0_m_krp = 206.2 206.2 None
mvt_m_krp mvt_m_krp = -53.9 -53.9 None
mkt_m_krp mkt_m_krp = 26.5 26.5 None
mth_h_krp mth_h_krp = -55.0 -55.0 None
mk_h_krp mk_h_krp = -19.0 -19.0 None
mvt_h_krp mvt_h_krp = -38.2 -38.2 None
mkt_h_krp mkt_h_krp = 28 28.0 None
mm_krp[1..40] = 0 0.0 None
mh_krp[1..40] = .7647 0.7647 None
mv_nap mv_nap = 45 45.0 None
mg_nap mg_nap = 0.02 0.02 None
mtemp_nap mtemp_nap = 22 22.0 None
mth_m_nap mth_m_nap = -47.8 -47.8 None
mk_m_nap mk_m_nap = 3.1 3.1 None
mt0_m_nap mt0_m_nap = 1.0 1.0 None
mm_nap[1..40] = 0 0.0 None
mv_nas mv_nas = 40 40.0 None
mg_nas mg_nas = 0.11 0.11 None
mtemp_nas mtemp_nas = 21 21.0 None
mth_m_nas mth_m_nas = -16.0 -16.0 None
mk_m_nas mk_m_nas = 9.4 9.4 None
mt0_m_nas mt0_m_nas = 637.8 637.8 None
mvt_m_nas mvt_m_nas = -33.5 -33.5 None
mkt_m_nas mkt_m_nas = 26.3 26.3 None
mm_nas[1..40] = 0 0.0 None
gcm gcm = 1 1.0 None
giapp giapp = 0 0.0 None
gv_l gv_l = -60 -60.0 None
gg_leak gg_leak = .068 0.068 None
gv_na gv_na = 50 50.0 None
gg_naf gg_naf = 50 50.0 None
gth_m_naf gth_m_naf = -39 -39.0 None
gk_m_naf gk_m_naf = 5.0 5.0 None
gt0_m_naf gt0_m_naf = 0.028 0.028 None
gt1_m_naf gt1_m_naf = 0.028 0.028 None
gph_m_naf gph_m_naf = 0 0.0 None
gmi_m_naf gmi_m_naf = 0.0 0.0 None
gs0_m_naf gs0_m_naf = 1 1.0 None
gs1_m_naf gs1_m_naf = 1 1.0 None
gth_h_naf gth_h_naf = -48 -48.0 None
gk_h_naf gk_h_naf = -2.8 -2.8 None
gt0_h_naf gt0_h_naf = 0.25 0.25 None
gt1_h_naf gt1_h_naf = 4.0 4.0 None
gph_h_naf gph_h_naf = -43 -43.0 None
gmi_h_naf gmi_h_naf = 0.0 0.0 None
gs0_h_naf gs0_h_naf = 10 10.0 None
gs1_h_naf gs1_h_naf = -5.0 -5.0 None
gth_s_naf gth_s_naf = -40 -40.0 None
gk_s_naf gk_s_naf = -5.4 -5.4 None
gt0_s_naf gt0_s_naf = 10 10.0 None
gt1_s_naf gt1_s_naf = 1000 1000.0 None
gph_s_naf gph_s_naf = -40 -40.0 None
gmi_s_naf gmi_s_naf = 0.15 0.15 None
gs0_s_naf gs0_s_naf = 18.3 18.3 None
gs1_s_naf gs1_s_naf = -10 -10.0 None
gm_naf[1..8] = 0.02 0.02 None
gh_naf[1..8] = 0.97 0.97 None
gs_naf[1..8] = 0.97 0.97 None
gg_nap gg_nap = 0.1 0.1 None
gth_m_nap gth_m_nap = -57.7 -57.7 None
gk_m_nap gk_m_nap = 5.7 5.7 None
gt0_m_nap gt0_m_nap = 0.03 0.03 None
gt1_m_nap gt1_m_nap = 0.146 0.146 None
gph_m_nap gph_m_nap = -42.6 -42.6 None
gmi_m_nap gmi_m_nap = 0.0 0.0 None
gs0_m_nap gs0_m_nap = 14.4 14.4 None
gs1_m_nap gs1_m_nap = -14.4 -14.4 None
gth_h_nap gth_h_nap = -57 -57.0 None
gk_h_nap gk_h_nap = -4 -4.0 None
gt0_h_nap gt0_h_nap = 10 10.0 None
gt1_h_nap gt1_h_nap = 17 17.0 None
gph_h_nap gph_h_nap = -34 -34.0 None
gmi_h_nap gmi_h_nap = 0.154 0.154 None
gs0_h_nap gs0_h_nap = 26 26.0 None
gs1_h_nap gs1_h_nap = -31.9 -31.9 None
gm_nap[1..8] = .48 0.48 None
gh_nap[1..8] = .68 0.68 None
gv_k gv_k = -90 -90.0 None
gg_kv2 gg_kv2 = 0.1 0.1 None
gth_m_kv2 gth_m_kv2 = -33.2 -33.2 None
gk_m_kv2 gk_m_kv2 = 9.1 9.1 None
gt0_m_kv2 gt0_m_kv2 = 0.1 0.1 None
gt1_m_kv2 gt1_m_kv2 = 3.0 3.0 None
gph_m_kv2 gph_m_kv2 = -33.2 -33.2 None
gmi_m_kv2 gmi_m_kv2 = 0.0 0.0 None
gs0_m_kv2 gs0_m_kv2 = 21.7 21.7 None
gs1_m_kv2 gs1_m_kv2 = -13.9 -13.9 None
gth_h_kv2 gth_h_kv2 = -20 -20.0 None
gk_h_kv2 gk_h_kv2 = -10 -10.0 None
gt0_h_kv2 gt0_h_kv2 = 3400 3400.0 None
gt1_h_kv2 gt1_h_kv2 = 3400 3400.0 None
gph_h_kv2 gph_h_kv2 = 0 0.0 None
gmi_h_kv2 gmi_h_kv2 = 0.2 0.2 None
gs0_h_kv2 gs0_h_kv2 = 1 1.0 None
gs1_h_kv2 gs1_h_kv2 = 1 1.0 None
gm_kv2[1..8] = 0.06 0.06 None
gh_kv2[1..8] = 1 1.0 None
gg_kv3 gg_kv3 = 10 10.0 None
gth_m_kv3 gth_m_kv3 = -26 -26.0 None
gk_m_kv3 gk_m_kv3 = 7.8 7.8 None
gt0_m_kv3 gt0_m_kv3 = 0.1 0.1 None
gt1_m_kv3 gt1_m_kv3 = 14 14.0 None
gph_m_kv3 gph_m_kv3 = -26 -26.0 None
gmi_m_kv3 gmi_m_kv3 = 0 0.0 None
gs0_m_kv3 gs0_m_kv3 = 13 13.0 None
gs1_m_kv3 gs1_m_kv3 = -12 -12.0 None
gth_h_kv3 gth_h_kv3 = -20 -20.0 None
gk_h_kv3 gk_h_kv3 = -10 -10.0 None
gt0_h_kv3 gt0_h_kv3 = 7.0 7.0 None
gt1_h_kv3 gt1_h_kv3 = 33 33.0 None
gph_h_kv3 gph_h_kv3 = 0 0.0 None
gmi_h_kv3 gmi_h_kv3 = 0.6 0.6 None
gs0_h_kv3 gs0_h_kv3 = 10 10.0 None
gs1_h_kv3 gs1_h_kv3 = -10 -10.0 None
gm_kv3[1..8] = 0.02 0.02 None
gh_kv3[1..8] = 0.99 0.99 None
gg_kvs gg_kvs = 3.0 3.0 None
gth_m_kvs gth_m_kvs = -49 -49.0 None
gk_m_kvs gk_m_kvs = 12.5 12.5 None
gt0_m_kvs gt0_m_kvs = 0.25 0.25 None
gt1_m_kvs gt1_m_kvs = 7.0 7.0 None
gph_m_kvs gph_m_kvs = -49 -49.0 None
gmi_m_kvs gmi_m_kvs = 0 0.0 None
gs0_m_kvs gs0_m_kvs = 29 29.0 None
gs1_m_kvs gs1_m_kvs = -29 -29.0 None
gth_h_kvs gth_h_kvs = -83 -83.0 None
gk_h_kvs gk_h_kvs = -10 -10.0 None
gt0_h_kvs gt0_h_kvs = 15 15.0 None
gt1_h_kvs gt1_h_kvs = 100 100.0 None
gph_h_kvs gph_h_kvs = -83 -83.0 None
gmi_h_kvs gmi_h_kvs = 0 0.0 None
gs0_h_kvs gs0_h_kvs = 10 10.0 None
gs1_h_kvs gs1_h_kvs = -10 -10.0 None
gm_kvs[1..8] = .32 0.32 None
gh_kvs[1..8] = .08 0.08 None
gg_kv7 gg_kv7 = 0.15 0.15 None
gth_m_kv7 gth_m_kv7 = -61 -61.0 None
gk_m_kv7 gk_m_kv7 = 19.5 19.5 None
gt0_m_kv7 gt0_m_kv7 = 6.7 6.7 None
gt1_m_kv7 gt1_m_kv7 = 100 100.0 None
gph_m_kv7 gph_m_kv7 = -61 -61.0 None
gmi_m_kv7 gmi_m_kv7 = 0 0.0 None
gs0_m_kv7 gs0_m_kv7 = 35 35.0 None
gs1_m_kv7 gs1_m_kv7 = -25 -25.0 None
gm_kv7[1..8] = .53 0.53 None
gv_hcn gv_hcn = -30 -30.0 None
gg_hcn gg_hcn = 0.1 0.1 None
gth_m_hcn gth_m_hcn = -76.4 -76.4 None
gk_m_hcn gk_m_hcn = -3.3 -3.3 None
gt0_m_hcn gt0_m_hcn = 0 0.0 None
gt1_m_hcn gt1_m_hcn = 3625 3625.0 None
gph_m_hcn gph_m_hcn = -76.4 -76.4 None
gmi_m_hcn gmi_m_hcn = 0 0.0 None
gs0_m_hcn gs0_m_hcn = 6.56 6.56 None
gs1_m_hcn gs1_m_hcn = -7.48 -7.48 None
gm_hcn[1..8] = 0 0.0 None
gv_ca gv_ca = 130 130.0 None
gg_cah gg_cah = 0.3 0.3 None
gth_m_cah gth_m_cah = -20 -20.0 None
gk_m_cah gk_m_cah = 7.0 7.0 None
gt0_m_cah gt0_m_cah = 0.2 0.2 None
gt1_m_cah gt1_m_cah = 0.2 0.2 None
gph_m_cah gph_m_cah = 0 0.0 None
gmi_m_cah gmi_m_cah = 0 0.0 None
gs0_m_cah gs0_m_cah = 1 1.0 None
gs1_m_cah gs1_m_cah = 1 1.0 None
gm_cah[1..8] = 0 0.0 None
gav gav = 3000 3000.0 None
f f = 96485 96485.0 None
z z = 2.0 2.0 None
gk_ca gk_ca = 0.4 0.4 None
gc_ca0 gc_ca0 = .01 0.01 None
gc_ca50 gc_ca50 = 0.35 0.35 None
gc_ca_sat gc_ca_sat = 5.0 5.0 None
hcoeff hcoeff = 4.6 4.6 None
gc_ca[1..8] = .01 0.01 None
gg_ksk gg_ksk = 0.4 0.4 None
gm_t0_ksk gm_t0_ksk = 4.0 4.0 None
gm_t1_ksk gm_t1_ksk = 76 76.0 None
gm_ksk[1..8] = 0 0.0 None
fc fc = 1.0 1.0 None
fiapp fiapp = 0 0.0 None
fv_l fv_l = -70.0 -70.0 None
fg_l fg_l = 0.25 0.25 None
fv_na fv_na = 50.0 50.0 None
fg_na fg_na = 112.5 112.5 None
fth_m_na fth_m_na = -24.0 -24.0 None
fk_m_na fk_m_na = 11.5 11.5 None
fth_h_na fth_h_na = -58.3 -58.3 None
fk_h_na fk_h_na = -6.7 -6.7 None
ftt_h_na ftt_h_na = -60 -60.0 None
fkt_h_na fkt_h_na = -12.0 -12.0 None
fh_na[1..8] = 0.8522 0.8522 None
fv_k fv_k = -90.0 -90.0 None
fg_kv3 fg_kv3 = 225.0 225.0 None
fth_n_kv3 fth_n_kv3 = -12.4 -12.4 None
fk_n_kv3 fk_n_kv3 = 6.8 6.8 None
fta_n_kv3 fta_n_kv3 = -14.6 -14.6 None
fka_n_kv3 fka_n_kv3 = -8.6 -8.6 None
ftb_n_kv3 ftb_n_kv3 = 1.3 1.3 None
fkb_n_kv3 fkb_n_kv3 = 18.7 18.7 None
fn_kv3[1..8] = 0.000208 0.000208 None
fg_kv1 fg_kv1 = 0.1 0.1 None
fth_m_kv1 fth_m_kv1 = -50 -50.0 None
fk_m_kv1 fk_m_kv1 = 20 20.0 None
fth_h_kv1 fth_h_kv1 = -70 -70.0 None
fk_h_kv1 fk_h_kv1 = -6 -6.0 None
ft_m_kv1 ft_m_kv1 = 2 2.0 None
ft_h_kv1 ft_h_kv1 = 150 150.0 None
fm_kv1[1..8] = 0.2686 0.2686 None
fh_kv1[1..8] = 0.5016 0.5016 None
v_i v_i = -80 -80.0 None
th_hg th_hg = -57.8 -57.8 None
s_hg s_hg = 2.0 2.0 None
g_m2m g_m2m = .14 0.14 None
a_m2m a_m2m = 2.0 2.0 None
b_m2m b_m2m = .13 0.13 None
th_g_m2m th_g_m2m = 52 52.0 None
g_g2g g_g2g = .13 0.13 None
a_g2g a_g2g = 2.0 2.0 None
b_g2g b_g2g = .09 0.09 None
th_g_g2g th_g_g2g = 47 47.0 None
g_f2f g_f2f = .11 0.11 None
a_f2f a_f2f = 2.0 2.0 None
b_f2f b_f2f = .18 0.18 None
th_g_f2f th_g_f2f = 57 57.0 None
g_m2g g_m2g = .1 0.1 None
a_m2g a_m2g = 2.0 2.0 None
b_m2g b_m2g = .09 0.09 None
th_g_m2g th_g_m2g = 57 57.0 None
g_g2f g_g2f = .13 0.13 None
a_g2f a_g2f = 2.0 2.0 None
b_g2f b_g2f = .09 0.09 None
th_g_g2f th_g_g2f = 47 47.0 None
g_f2m g_f2m = .15 0.15 None
a_f2m a_f2m = 2.0 2.0 None
b_f2m b_f2m = .1 0.1 None
th_g_f2m th_g_f2m = 57 57.0 None
v_x v_x = 0 0.0 None
g_x2g g_x2g = 0.02 0.02 None
g_x2f g_x2f = .095 0.095 None
mspks[1..40] = 0 0.0 None
gspks[1..8] = 0 0.0 None
fspks[1..8] = 0 0.0 None
mv[1..40] 0.0 None
gv[1..8] 0.0 None
fv[1..8] 0.0 None
mv[1..40] = ran(40)-80 0.0 dimensionless None
gv[1..8] = ran(40)-80 0.0 dimensionless None
fv[1..8] = ran(40)-80 0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
mt_m_kir 0.0 dimensionless None
0.0 dimensionless None
mt_m_kaf 0.0 dimensionless None
0.0 dimensionless None
mt_h_kaf 0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
mt_m_nap 0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
0.0 dimensionless None
mprate 0.0 dimensionless None
gprate 0.0 dimensionless None
fprate 0.0 dimensionless None
t model time 0.0 dimensionless None

InitialAssignments [3] name assignment derived units sbo cvterm
= ran 40 80 None
= ran 40 80 None
= ran 40 80 None

Rules [130]   assignment name derived units sbo cvterm
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
mt_m_kir = mt0_m_kir None
= None None
mt_m_kaf = mt0_m_kaf mtadjf mtemp_kaf mq10 mtemp1 None
= None None
mt_h_kaf = mt0_h_kaf mtadjf mtemp_kaf mq10 mtemp1 None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
mt_m_nap = mt0_m_nap mtadjf mtemp_nap mq10 mtemp1 None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= gc_ca50 10 6 hcoeff None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
= None None
mprate = None None
gprate = None None
fprate = None None
t = time None

Events [3] name trigger priority delay assignments sbo cvterm
e0 None
initialValue = False
persistent = True
= None
e1 None
initialValue = False
persistent = True
= None
e2 None
initialValue = False
persistent = True
= None