XPP model
This model was converted from XPP ode format to SBML using sbmlutils-0.1.5a6
.
% Spike adaptation by erg-like K+ current. If girbar is altered (0.5->0),
% spike discharge will be changed.
% Written by Dr. Sheng-Nan Wu, Dept Physiol, Natl Cheng Kung U Med Coll.
% Ref: Chiesa et al., J Physiol 1997;501:313-318
% Initial values of the variables
init v=-72.0, nK=0.288, hK=0.367, mNa=0.041, hNa=0.844, nIR=0.003, rIR=0.282
% Values of the model parameters
params iapp=1.2, cm=1, gnabar=15, gkbar=2.5, girbar=0.5, gl=0.05, vna=50, vk=-80, vir=-80, vl=-80
% Gating functions
alphaNam(v) = 0.1*(v+40)/( 1 - exp(-0.09*(v+40)))
betaNam(v) = 4*exp(-0.055*(v+70))
mNainf(v) = 1/(1+betaNam(v)/alphaNam(v))
tauNam(v) = 1/(alphaNam(v) + betaNam(v))
alphaNah(v) = 0.07*exp(-0.05*(v+70))
betaNah(v) = 1/( 1 + exp(-0.09*(v+25)) )
hNainf(v) = 1/(1+betaNah(v)/alphaNah(v))
tauNah(v) = 1/(alphaNah(v) + betaNah(v))
alphaKn(v) = 0.01*(v + 60)/(1 - exp(-0.1*(V + 60)))
betaKn(v) = 0.125*exp(-0.0125*(V + 70))
nKinf(v) = 1/(1+betaKn(v)/alphaKn(v))
tauKn(v) = 1/(alphaKn(v) + betaKn(v))
alphaKh(v) = 0.001*exp(-0.04*(v+70))
betaKh(v) = 0.001*exp(-0.0195*(v+40))
hKinf(v) = 1/(1+betaKh(v)/alphaKh(v))
tauKh(v) = 1/(alphaKh(v) + betaKh(v))
alphaIRn(v) = 0.09/(1+exp(0.11*(v+100)))
betaIRn(v) = 0.00035*exp(0.07*(v+25))
nIRinf(v) = 1/(1+betaIRn(v)/alphaIRn(v))
tauIRn(v) = 1/(alphaIRn(v) + betaIRn(v))
alphaIRr(v) = 30/(1+exp(0.04*(v+230)))
betaIRr(v) = 0.15/(1+exp(-0.05*(v+120)))
rIRinf(v) = 1/(1+betaIRr(v)/alphaIRr(v))
tauIRr(v) = 1/(alphaIRr(v) + betaIRr(v))
% Apply current injection
par tpulse=610
par tfirst=10
istim = iapp*(heav(t-tfirst)-heav(t-tpulse))
% The differential equations
v' = -(gnabar*mNa^3*hNa*(v-vna) + gkbar*nK^4*hK*(v-vk) + girbar*nIR*rIR*(v-vir) + gl*(v-vl) - istim)/cm
mNa' = (mNainf(v) - mNa)/tauNam(v)
hNa' = (hNainf(v) - hNa)/tauNah(v)
nK' = (nKinf(v) - nK)/tauKn(v)
hK' = (hKinf(v) - hK)/tauKh(v)
nIR' = (nIRinf(v) - nIR)/tauIRn(v)
rIR' = (rIRinf(v) - rIR)/tauIRr(v)
% Numerical and plotting parameters for xpp
@xlo=0, xhi=700, ylo=-90, yhi=+60, total=700, dt=0.05, method=Euler, LT=1
d
Terms of use
Copyright © 2017 Matthias Koenig
Redistribution and use of any part of this model, with or without modification, are permitted provided that
the following conditions are met:
Redistributions of this SBML file must retain the above copyright notice, this list of conditions
and the following disclaimer.
Redistributions in a different form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Model :
id
name
time
substance
extent
volume
area
length
L3V1
type
FunctionDefinitions [28]
name
math
sbo
cvterm
FunctionDefinition
max
minimum
x
y
x
x
y
y
FunctionDefinition
min
maximum
x
y
x
x
y
y
FunctionDefinition
heav
heavyside
x
0
x
0
0.5
x
0
1
x
0
0
FunctionDefinition
mod
modulo
x
y
x
y
x
y
x
0
y
0
x
y
x
y
FunctionDefinition
alphanam
v
0.1
v
40
1
0.09
v
40
FunctionDefinition
betanam
v
4
0.055
v
70
FunctionDefinition
mnainf
v
1
1
betanam
v
alphanam
v
FunctionDefinition
taunam
v
1
alphanam
v
betanam
v
FunctionDefinition
alphanah
v
0.07
0.05
v
70
FunctionDefinition
betanah
v
1
1
0.09
v
25
FunctionDefinition
hnainf
v
1
1
betanah
v
alphanah
v
FunctionDefinition
taunah
v
1
alphanah
v
betanah
v
FunctionDefinition
alphakn
v
0.01
v
60
1
0.1
v
60
FunctionDefinition
betakn
v
0.125
0.0125
v
70
FunctionDefinition
nkinf
v
1
1
betakn
v
alphakn
v
FunctionDefinition
taukn
v
1
alphakn
v
betakn
v
FunctionDefinition
alphakh
v
0.001
0.04
v
70
FunctionDefinition
betakh
v
0.001
0.0195
v
40
FunctionDefinition
hkinf
v
1
1
betakh
v
alphakh
v
FunctionDefinition
taukh
v
1
alphakh
v
betakh
v
FunctionDefinition
alphairn
v
0.09
1
0.11
v
100
FunctionDefinition
betairn
v
0.00035
0.07
v
25
FunctionDefinition
nirinf
v
1
1
betairn
v
alphairn
v
FunctionDefinition
tauirn
v
1
alphairn
v
betairn
v
FunctionDefinition
alphairr
v
30
1
0.04
v
230
FunctionDefinition
betairr
v
0.15
1
0.05
v
120
FunctionDefinition
ririnf
v
1
1
betairr
v
alphairr
v
FunctionDefinition
tauirr
v
1
alphairr
v
betairr
v
type
Parameters [21]
name
constant
value
unit
derived unit
sbo
cvterm
Parameter
v
v = -72.0
F
-72.0
None
Parameter
nk
nk = 0.288
F
0.288
None
Parameter
hk
hk = 0.367
F
0.367
None
Parameter
mna
mna = 0.041
F
0.041
None
Parameter
hna
hna = 0.844
F
0.844
None
Parameter
nir
nir = 0.003
F
0.003
None
Parameter
rir
rir = 0.282
F
0.282
None
Parameter
iapp
iapp = 1.2
F
1.2
None
Parameter
cm
cm = 1
F
1.0
None
Parameter
gnabar
gnabar = 15
F
15.0
None
Parameter
gkbar
gkbar = 2.5
F
2.5
None
Parameter
girbar
girbar = 0.5
F
0.5
None
Parameter
gl
gl = 0.05
F
0.05
None
Parameter
vna
vna = 50
F
50.0
None
Parameter
vk
vk = -80
F
-80.0
None
Parameter
vir
vir = -80
F
-80.0
None
Parameter
vl
vl = -80
F
-80.0
None
Parameter
tpulse
tpulse = 610
F
610.0
None
Parameter
tfirst
tfirst = 10
F
10.0
None
Parameter
istim
F
0.0
dimensionless
None
Parameter
t
model time
F
0.0
dimensionless
None
type
Rules [9]
assignment
name
derived units
sbo
cvterm
Rule
d v/dt
=
gnabar
mna
3
hna
v
vna
gkbar
nk
4
hk
v
vk
girbar
nir
rir
v
vir
gl
v
vl
istim
cm
None
Rule
d mna/dt
=
mnainf
v
mna
taunam
v
None
Rule
d hna/dt
=
hnainf
v
hna
taunah
v
None
Rule
d nk/dt
=
nkinf
v
nk
taukn
v
None
Rule
d hk/dt
=
hkinf
v
hk
taukh
v
None
Rule
d nir/dt
=
nirinf
v
nir
tauirn
v
None
Rule
d rir/dt
=
ririnf
v
rir
tauirr
v
None
Rule
istim
=
iapp
heav
t
tfirst
heav
t
tpulse
None
Rule
t
=
time
None