This model was converted from XPP ode format to SBML using sbmlutils-0.1.5a6.
#
# This is the one-cell model with fixed [K]o AND [Na]i used in
#
# E. Barreto and J.R. Cressman, "Ion Concentration Dynamics as a Mechanism for Neuronal Bursting",
# Journal of Biological Physics 37, 361-373 (2011).
#
# Link to the paper: http://www.springerlink.com/content/v52215p195159211/
# Author-generated version available at: http://arxiv.org/abs/1012.3124
#
# The variables are:
# V=y[1]=V, the membrane voltage
# n=y[2]=n, gating variable
# h=y[3]=h, gating variable
#
par E_cl=-81.93864549
par Cm=1.0, g_na=100.0, g_naL=0.0175, g_k=40.0, g_kL=0.05
par g_ahp=0.01, g_clL=0.05, g_ca=0.1, phi=3.0
par Ko=4.0, Nai=18.0, I=0.0
########
alpha_n=0.01*(V+34.0)/(1.0-exp(-0.1*(V+34.0)))
beta_n=0.125*exp(-(V+44.0)/80.0)
alpha_m=0.1*(V+30.0)/(1.0-exp(-0.1*(V+30.0)))
beta_m=4.0*exp(-(V+55.0)/18.0)
alpha_h=0.07*exp(-(V+44.0)/20.0)
beta_h=1.0/(1.0+exp(-0.1*(V+14.0)))
m_inf=alpha_m/(alpha_m+beta_m)
Kin=158.0-Nai
Naout=144.0-7.0*(Nai-18.0)
E_k=26.64*log((Ko/Kin))
E_na=26.64*log((Naout/Nai))
Ina=g_na*(m_inf*m_inf*m_inf)*h*(V-E_na)+g_naL*(V-E_na)
Ik=(g_k*n*n*n*n)*(V-E_k)+g_kL*(V-E_k)
Icl=g_clL*(V-E_cl)
# differential equations
V'=(1.0/Cm)*(-Ina-Ik-Icl+I)
n'=phi*(alpha_n*(1-n)-beta_n*n)
h'=phi*(alpha_h*(1-h)-beta_h*h)
####
init V=-50,n=0.08553,h=0.96859
@ TOTAL=1000,BOUND=10000
done
Redistribution and use of any part of this model, with or without modification, are permitted provided that
the following conditions are met:
Redistributions of this SBML file must retain the above copyright notice, this list of conditions
and the following disclaimer.
Redistributions in a different form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.