XPP model
This model was converted from XPP ode format to SBML using sbmlutils-0.1.5a6
.
##########################################################################
# Simple model of circadian clock with SNF structure
# Generated: 12-Sep-2012 00:39:32
# Generated by Jae Kyoung Kim and Daniel Forger by using SBtoolbox2
# This file can be used by XPPAUT for simulation and
# bifurcation analysis.
##########################################################################
########################################################
# DIFFERENTIAL EQUATIONS
########################################################
M'=ao*(A-P-Kd+((A-P-Kd)^2+4*A*Kd)^0.5)/(2*A)-bo*M
Pc'=at*M-bt*Pc
P'=ah*Pc-bh*P
########################################################
# PARAMETERS
########################################################
param ao=1
param at=1
param ah=1
param bo=1
param bt=1
param bh=1
param A=0.0659
param Kd=1e-05
########################################################
# FUNCTIONS
########################################################
power(x,y)=x^y
########################################################
# INITIAL CONDITIONS
########################################################
M(0)=0.1
Pc(0)=0.1
P(0)=0.1
########################################################
# INTEGRATOR SETTINGS AND DONE
########################################################
@ method=stiff
@ bounds=100000
@ maxstor=20000
done
Terms of use
Copyright © 2017 Matthias Koenig
Redistribution and use of any part of this model, with or without modification, are permitted provided that
the following conditions are met:
Redistributions of this SBML file must retain the above copyright notice, this list of conditions
and the following disclaimer.
Redistributions in a different form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Model :
id
name
time
substance
extent
volume
area
length
L3V1
type
FunctionDefinitions [4]
name
math
sbo
cvterm
FunctionDefinition
max
minimum
x
y
x
x
y
y
FunctionDefinition
min
maximum
x
y
x
x
y
y
FunctionDefinition
heav
heavyside
x
0
x
0
0.5
x
0
1
x
0
0
FunctionDefinition
mod
modulo
x
y
x
y
x
y
x
0
y
0
x
y
x
y
type
Parameters [12]
name
constant
value
unit
derived unit
sbo
cvterm
Parameter
ao
ao = 1
F
1.0
None
Parameter
at
at = 1
F
1.0
None
Parameter
ah
ah = 1
F
1.0
None
Parameter
bo
bo = 1
F
1.0
None
Parameter
bt
bt = 1
F
1.0
None
Parameter
bh
bh = 1
F
1.0
None
Parameter
a
a = 0.0659
F
0.0659
None
Parameter
kd
kd = 1e-05
F
1e-05
None
Parameter
m
m = 0.1
F
0.1
None
Parameter
pc
pc = 0.1
F
0.1
None
Parameter
p
p = 0.1
F
0.1
None
Parameter
t
model time
F
0.0
dimensionless
None
type
Rules [4]
assignment
name
derived units
sbo
cvterm
Rule
d m/dt
=
ao
a
p
kd
a
p
kd
2
4
a
kd
0.5
2
a
bo
m
None
Rule
d pc/dt
=
at
m
bt
pc
None
Rule
d p/dt
=
ah
pc
bh
p
None
Rule
t
=
time
None