XPP model

This model was converted from XPP ode format to SBML using sbmlutils-0.1.5a6.

% ikca_Mocz.ode
% simplified mode for calcium-activated K+ current 
% (Ref: From Moczydlowski and Latorre (1983)  J. Gen. Physiol. 82:511-542.)
% Model 3. (Scheme R1 page 523)
% (Ref: From Wang et al (2008) J. Membr. Biol. 213:175-185.)
% Model has been briefly described in Computational Cell Biology (pp 88-90)
% Results are similar to those in 'cagk' in NEURON
% Equation was incorporated to model skeletal muscle cell (Wang et al., 2008)

% Initial values of the variables
init o=0.0

% Values of the model parameters; Units= mM, ms(-1), mV
% k1 and k2 are zero-voltage dissociation constants.
% d1 and d2 are fractional distances of the electric field.
% bbar is alpha in originanl paper (1983) (p 524)
par d1=0.84, d2=1.0, k1=0.18, k2=0.011, bbar=0.28, abar=0.48, celsius=20
par gkbar=0.01, cai=0.1
number fara=96.485
par ko=5.4, ki=140
par vhold=-65, vtest=20
par ton=2, toff=12
v = vhold + heav(t-ton)*heav(toff-t)*(vtest-vhold)

% Gating functions
ek = (8.313424*(273.15+celsius)/fara)*ln(ko/ki)
alp(v) = abar/(1+k1*exp(-2*d1*fara*v/8.313424/(273.15+celsius))/cai)
beta(v) = bbar/(1+cai/(k2*exp(-2*d2*fara*v/8.313424/(273.15+celsius))))
tau(v) = 1/(alp(v)+beta(v))
oinf(v) = alp(v)*tau(v)

% Differential equation
o' = (oinf(v)-o)/tau(v)
aux ikca = gkbar*o*(v-ek)
aux vm=v

% Numerical and plotting parameters for xpp
@ yp=ikca, xlo=0, xhi=18 ylo=-.04, yhi=1.0, total=18, dt=0.01, method=Euler, LT=1

done
This file has been produced by sbmlutils.

Terms of use

Copyright © 2017 Matthias Koenig

Redistribution and use of any part of this model, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of this SBML file must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in a different form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


Model :

id
name
time
substance
extent
volume
area
length
Access SBML model  L3V1

FunctionDefinitions [8] name math sbo cvterm
max minimum x y x x y y
min maximum x y x x y y
heav heavyside x 0 x 0 0.5 x 0 1 x 0 0
mod modulo x y x y x y x 0 y 0 x y x y
alp v abar cai celsius d1 fara k1 abar 1 k1 2 d1 fara v 8.313424 273.15 celsius cai
beta v bbar cai celsius d2 fara k2 bbar 1 cai k2 2 d2 fara v 8.313424 273.15 celsius
tau v abar bbar cai celsius d1 d2 fara k1 k2 1 alp v d1 k1 cai abar celsius fara beta v bbar k2 d2 cai celsius fara
oinf v abar bbar cai celsius d1 d2 fara k1 k2 alp v d1 k1 cai abar celsius fara tau v abar bbar cai celsius d1 d2 fara k1 k2

Parameters [22] name constant value unit derived unit sbo cvterm
o o = 0.0 0.0 None
d1 d1 = 0.84 0.84 None
d2 d2 = 1.0 1.0 None
k1 k1 = 0.18 0.18 None
k2 k2 = 0.011 0.011 None
bbar bbar = 0.28 0.28 None
abar abar = 0.48 0.48 None
celsius celsius = 20 20.0 None
gkbar gkbar = 0.01 0.01 None
cai cai = 0.1 0.1 None
fara fara = 96.485 96.485 None
ko ko = 5.4 5.4 None
ki ki = 140 140.0 None
vhold vhold = -65 -65.0 None
vtest vtest = 20 20.0 None
ton ton = 2 2.0 None
toff toff = 12 12.0 None
v 0.0 dimensionless None
ek 0.0 dimensionless None
ikca 0.0 dimensionless None
vm 0.0 dimensionless None
t model time 0.0 dimensionless None

Rules [6]   assignment name derived units sbo cvterm
d o/dt = oinf v abar bbar cai celsius d1 d2 fara k1 k2 o tau v abar bbar cai celsius d1 d2 fara k1 k2 None
v = vhold heav t ton heav toff t vtest vhold None
ek = 8.313424 273.15 celsius fara ko ki None
ikca = gkbar o v ek None
vm = v None
t = time None