DallaMan2006 - Glucose Insulin System

Description

This is a A simulation model of the glucose-insulin system in the postprandial state in SBML format.

This model is described in the article:

Dalla Man C, Rizza RA, Cobelli C.
IEEE Trans Biomed Eng. 2007 Oct;54(10):1740-9.

Abstract:

Asimulation model of the glucose-insulin system in the postprandial state can be useful in several circumstances, including testing of glucose sensors, insulin infusion algorithms and decision support systems for diabetes. Here, we present a new simulation model in normal humans that describes the physiological events that occur after a meal, by employing the quantitative knowledge that has become available in recent years. Model parameters were set to fit the mean data of a large normal subject database that underwent a triple tracer meal protocol which provided quasi-modelindependent estimates of major glucose and insulin fluxes, e.g., meal rate of appearance, endogenous glucose production, utilization of glucose, insulin secretion.

The content of this model has been carefully created in a manual research effort.
This file has been created by Matthias Koenig.

Terms of use

Copyright © 2019 Matthias Koenig.

Redistribution and use of any part of this model, with or without modification, are permitted provided that the following conditions are met:

  1. Redistributions of this SBML file must retain the above copyright notice, this list of conditions and the following disclaimer.
  2. Redistributions in a different form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
This model is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.


Model : DallaMan2006_2

Creator
Matthias, Koenig, Humboldt-University Berlin, Institute for Theoretical Biology, koenigmx@hu-berlin.de
Created: 2019-03-06 09:28
Modified: 2019-03-06 09:28

id DallaMan2006_2 meta_DallaMan2006_2
nameDallaMan2006_2
timemin
substancemole
extentmole
volumem3
aream2
lengthm
Access SBML model  L3V1 fbc-V2 comp-V1

UnitDefinitions [19] name units sbo cvterm
kg kg
m m
m2 m 2
m3 m 3
min 60 s
per_min 1 60 s
l_per_kg litre kg
dl_per_kg 10 1 litre kg
mg_per_kg 10 3 g kg
mg_per_dl 10 3 g 10 1 litre
pmol_per_kg 10 9 mole kg
pmol_per_l 10 9 mole litre
pmol_per_kgmin 10 9 mole kg 60 s
minkg_per_pmol kg 60 s 10 9 mole
mg_per_kgmin 10 3 g kg 60 s
mgl_per_kgminpmol 10 3 g litre kg 10 9 mole 60 s
mg_per_minpmol 10 3 g 10 9 mole 60 s
pmolmg_per_kgdl 10 3 g 10 9 mole kg 10 1 litre
pmolmg_per_kgmindl 10 3 g 10 9 mole kg 10 1 litre 60 s

Parameters [73] name constant value unit derived unit sbo cvterm
Gp glucose plasma 178.0 mg_per_kg 10 3 g kg
Gt glucose tissue 135.0 mg_per_kg 10 3 g kg
Il insulin mass liver 4.5 pmol_per_kg 10 9 mole kg
Ip insulin mass plasma 1.25 pmol_per_kg 10 9 mole kg
Qsto1 78000.0 None
Qsto2 0.0 None
Qgut 0.0 None
I1 25.0 None
Id delayed insulin 25.0 pmol_per_l 10 9 mole litre
INS 0.0 None
Ipo insulin portal vein 3.6 pmol_per_kg 10 9 mole kg
Y 0.0 None
BW body weight 78.0 kg kg
D 78000.0 None
V_G V_G distribution volume glucose 1.88 dl_per_kg 10 1 litre kg
k_1 k_1 glucose kinetics 0.065 per_min 1 60 s
k_2 k_2 glucose kinetics 0.079 per_min 1 60 s
G_b 95.0 None
V_I V_I distribution volume insulin 0.05 l_per_kg litre kg
m_1 0.19 per_min 1 60 s
m_2 0.484 per_min 1 60 s
m_4 0.194 per_min 1 60 s
m_5 0.0304 minkg_per_pmol kg 60 s 10 9 mole
m_6 0.6471 dimensionless None
HE_b 0.6 dimensionless None
I_b 25.0 None
S_b 1.8 None
k_max 0.0558 per_min 1 60 s
k_min 0.008 per_min 1 60 s
k_abs 0.057 per_min 1 60 s
k_gri 0.0558 per_min 1 60 s
f 0.9 dimensionless None
b 0.82 dimensionless None
d 0.01 dimensionless None
k_p1 2.7 mg_per_kgmin 10 3 g kg 60 s
k_p2 0.0021 per_min 1 60 s
k_p3 0.009 mgl_per_kgminpmol 10 3 g litre kg 10 9 mole 60 s
k_p4 0.0618 mg_per_minpmol 10 3 g 10 9 mole 60 s
k_i 0.0079 per_min 1 60 s
U_ii insulin independent glucose utilization 1.0 mg_per_kgmin 10 3 g kg 60 s
V_m0 2.5 mg_per_kgmin 10 3 g kg 60 s
V_mX 0.047 mgl_per_kgminpmol 10 3 g litre kg 10 9 mole 60 s
K_m0 225.59 mg_per_kg 10 3 g kg
V_f0 2.5 mg_per_kgmin 10 3 g kg 60 s
V_fX 0.047 mgl_per_kgminpmol 10 3 g litre kg 10 9 mole 60 s
K_f0 225.59 mg_per_kg 10 3 g kg
p_2U 0.0331 per_min 1 60 s
part 0.2 None
K 2.3 pmolmg_per_kgdl 10 3 g 10 9 mole kg 10 1 litre
alpha 0.05 per_min 1 60 s
beta 0.11 pmolmg_per_kgmindl 10 3 g 10 9 mole kg 10 1 litre 60 s
gamma 0.5 per_min 1 60 s
k_e1 0.0005 per_min 1 60 s
k_e2 339.0 mg_per_kg 10 3 g kg
aa 5 2 1 b D None
cc 5 2 d D None
EGP EGP endogenous glucose production k_p1 k_p2 Gp k_p3 Id k_p4 Ipo mg_per_kgmin 10 3 g kg 60 s
V_mmax 1 part V_m0 V_mX INS None
V_fmax part V_f0 V_fX INS None
E renal excretion 0 mg_per_kgmin 10 3 g kg 60 s
S S insulin secretion gamma Ipo pmol_per_kgmin 10 9 mole kg 60 s
I I plasma insulin Ip V_I pmol_per_l 10 9 mole litre
G G plasma Glucose Gp V_G mg_per_dl 10 3 g 10 1 litre
HE HE hepatic extraction insulin m_5 S m_6 dimensionless None
m_3 HE m_1 1 HE per_min 1 60 s
Q_sto Qsto1 Qsto2 None
Ra Ra glucose rate of appearance 1.32 f k_abs Qgut BW mg_per_kgmin 10 3 g kg 60 s
k_empt k_min k_max k_min 2 aa Q_sto b D cc Q_sto d D 2 None
U_idm V_mmax Gt K_m0 Gt mg_per_kgmin 10 3 g kg 60 s
U_idf V_fmax Gt K_f0 Gt mg_per_kgmin 10 3 g kg 60 s
U_id insulin dependent glucose utilization U_idm U_idf mg_per_kgmin 10 3 g kg 60 s
U U glucose uptake U_ii U_id mg_per_kgmin 10 3 g kg 60 s
S_po Y K EGP Ra E U_ii k_1 Gp k_2 Gt V_G S_b None

Rules [31]   assignment name derived units sbo cvterm
aa = 5 2 1 b D None
cc = 5 2 d D None
EGP = k_p1 k_p2 Gp k_p3 Id k_p4 Ipo 10 3 g kg 60 s
V_mmax = 1 part V_m0 V_mX INS 10 3 g litre kg 10 9 mole 60 s
V_fmax = part V_f0 V_fX INS 10 3 g litre kg 10 9 mole 60 s
E = 0 None
S = gamma Ipo 10 9 mole kg 60 s
I = Ip V_I 10 9 mole litre
G = Gp V_G 10 3 g 10 1 litre
HE = m_5 S m_6 None
m_3 = HE m_1 1 HE 1 60 s
Q_sto = Qsto1 Qsto2 None
Ra = 1.32 f k_abs Qgut BW 1 kg 60 s
k_empt = k_min k_max k_min 2 aa Q_sto b D cc Q_sto d D 2 1 60 s
U_idm = V_mmax Gt K_m0 Gt None
U_idf = V_fmax Gt K_f0 Gt None
U_id = U_idm U_idf 10 3 g kg 60 s
U = U_ii U_id 10 3 g kg 60 s
S_po = Y K EGP Ra E U_ii k_1 Gp k_2 Gt V_G S_b None
d Gp/dt = EGP Ra U_ii E k_1 Gp k_2 Gt 10 3 g kg 60 s
d Gt/dt = U_id k_1 Gp k_2 Gt 10 3 g kg 60 s
d Il/dt = m_1 m_3 Il m_2 Ip S 10 9 mole kg 60 s
d Ip/dt = m_2 m_4 Ip m_1 Il 10 9 mole kg 60 s
d Qsto1/dt = k_gri Qsto1 1 60 s
d Qsto2/dt = k_empt Qsto2 k_gri Qsto1 1 60 s
d Qgut/dt = k_abs Qgut k_empt Qsto2 None
d I1/dt = k_i I1 I 10 9 mole litre 60 s
d Id/dt = k_i Id I1 10 9 mole litre 60 s
d INS/dt = p_2U INS p_2U I I_b 10 9 mole litre 60 s
d Ipo/dt = gamma Ipo S_po 10 9 mole kg 60 s
d Y/dt = alpha Y beta G G_b 0.001 g 2 10 9 mole kg 0.1 litre 2 60 s 2