

EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESSING (OBDP2021) 14-17 JUNE 2021

Brain in Space

Making AI in space accessible to all

Samantha Wagner, Spire Global Inc. samantha.wagner@spire.com

Agenda

- 1. About Spire
- 2. Spire Space Services
- 3. The 'Brain in Space' project
 - 1. The story behind 'Brain in Space'
 - 2. Objectives of the project
 - 3. Approach
- 4. Chip selection
- 5. Testbed assembly
- 6. Software development

About Spire

The Spire constellation

One of the largest private constellations in the world.

- The Low Earth Multi-Use Receiver (LEMUR) is Spire's 3U CubeSat platform used to track maritime, aviation, and weather activity from space
- We operate the world's largest RF sensing fleet and are the largest producer of radio occultation and space weather data
- Our data provides a global view with coverage in remote regions like oceans and poles; all data can be refreshed within 15 minute cycles
- We are continuously launching improved sensors and upgrading them in-orbit
- We turn ideas into live feed from space in as little as 6-12 months

29 Ground Stations

Our satellites

Covering the Earth 24/7

Data services provider that owns its own satellite infrastructure

One of the largest private satellite constellations in the world

Spire Space Services

Spire Space Services: The idea

Customer applications, ideas, and innovations Spire's proven space + ground + web platform Rapid + scalable deployment of distributed applications

Spire Space Services: How it works

You design an application

Your hardware and/or software is hosted on a Spire platform in LEO

End-to-end Space Services offering

Solutions in Space

Build your application on top of our global space platform, using one of the world's largest networks of sensors, software-defined radios and high performance computers.

Software in Space

Deploy your software to existing satellites, using Software Defined Radios (SDR) in space to test and scale your application without the need to launch a dedicated spacecraft

Constellation at your service Over 300 years of Spire space heritage - 110+ LEMUR satellites launched Payloads in Space - global network of ground stations: end - to - end Host your payload on a trusted, space service to rapidly fully-integrated platform and benefit from grow your mission at flexible and consistent launch schedule to constellation scale get into on-orbit operations faster than with any other provider.

∆spire

∆spire

Global Insights

The 'Brain in Space' project

The story behind 'Brain in Space'

-	्

Exponential growth in launch of small satellites

Massive rise of space-generated data

Shift from ("Can I get this data?")

to a more complex data-triage problem

("Can I get the right data to the right people at the right time with minimal use of additional resources?")

The story behind 'Brain in Space'

Technological developments in chipmaking made processing of an increasing part of data analytics possible directly at the satellite level, resulting in:

- Reduced ground infrastructure need
- Improved constellation efficiency
- Decreased latency for critical information
- Prioritization of data made possible
- Autonomous decision making for time critical decisions

'Brain in Space' objectives & approach

Nanosatellite testbed with embedded AI/ML chips for users to test AI applications and frameworks.

The purpose of this testbed is to create a simulated operating environment on the ground that allows to test the ability of a chip to enable the running of AI algorithms, to perform :

- time-critical missions
- reduction of download bandwidth requirements
- autonomous decision-making

Approach							
√ Chip selection	•••••	Hardware & 🗹 Software set up	•••••	Operations	Enabling actual testing of the retained chip's capabilities by end users		

Chip selection

Main Requirements:

- SWaP constraints from the platform
- Space environment

Tradeoff analysis :

- Power consumption
- Processing capacity
- Performance

benchmark (highly dependent on setup)

Chip architectures considered :

- Graphical Processing Units (GPUs)
- Tensor Processing Units (TPUs)
- Vision Processing Units (VPUs)
- Field-Programmable
 Gate Arrays (FPGAs)

Framework compatibility

- Many frameworks on the market
- Open source or Hardware licence
- Choice of framework driven by various parameters
- Frameworks compatibility

Selected chips available on the testbed

Carried on Spire satellites

- → Xilinx Zynq Ultrascale+
 - FPGA
 - Xilink engines for running AI algorithms on the chip
- → Nvidia Jetson TX2i
 - 🔶 GPU
 - Toolkits for on-board processing
- → Xilinx Zynq 7000 Series
 - Not directly available to end users
 - Part of the satellite BUS components

'Brain in Space' testbed only

- ➔ Google Coral
 - TPU
 - TensorFlow Live runs natively
 - Nvidia Jetson Nano
 - GPU
 - Lower processing power but also lower power consumption than other GPUs
 - Intel Myriad X
 - VPU
 - Optimized for deep learning and rapid prototyping
 - Compatible with both the TensorFlow and Caffe frameworks

'Brain in Space' testbed overview

∆spire

Example application

AIS payload testing with the computing module, based on Nvidia TX2i.

Objective :

- show how to use the 'Brain in Space' API for end-to-end processing, representative of how it is performed on orbit

Test procedure :

- Upload needed data files with Tasking API
- Wait until upload has completed using the /tasking/uploads API endpoint.
- Schedule a payload processing window with the Tasking API
- Once the payload processing window has completed, wait for the output to become available in the associated data bucket and download it.
- Compare that received message content and metadata with reference data.

Thank you!

Confidential and proprietary – disclosure subject to restrictions on cover page.

Appendix

Additional Assets

