
EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESSING (OBDP2021), 14-17 JUNE 2021

TASKING MODELING LANGUAGE: A TOOLSET FOR MODEL-BASED ENGINEERING
OF DATA-DRIVEN SOFTWARE SYSTEMS

Tobias Franz1, Ayush Mani Nepal1, Zain A. H. Hammadeh1, Olaf Maibaum1, Andreas Gerndt1,2, and
Daniel Lüdtke1

1German Aerospace Center (DLR), Institute for Software Technology, 38108 Braunschweig, Germany
2Center for Industrial Mathematics (ZeTeM), University of Bremen, 28359 Bremen, Germany

ABSTRACT

The interdisciplinary process of space systems engineer-
ing poses challenges for the development of the on-
board software. The software integrates components
from different domains and organizations and has to ful-
fill requirements, such as robustness, reliability, and real-
time capability. Model-based methods not only help to
give a comprehensive overview, but also improve pro-
ductivity by allowing artifacts to be generated from the
model automatically. However, general-purpose mod-
eling languages, such as the Systems Modeling Lan-
guage (SysML), are not always adequate because of their
ambiguity resulting from their generic nature. Further-
more, sensor data handling, analysis, and processing of
data in on-board software requires focus on the system’s
data flow and event mechanism. To achieve this, we de-
veloped the Tasking Modeling Language (TML) which
allows system engineers to model complex event-driven
software systems in a simplified way and to generate soft-
ware from the model. Type and consistency checks on the
formal level help to reduce errors early in the engineering
process. TML is focused on data-driven systems and its
models are designed to be extended and customized to
specific mission requirements. This paper describes the
architecture of TML in detail, explains the base technol-
ogy, the methodology, and the developed domain specific
languages (DSLs). It evaluates the design approach of the
software via a case study and presents advantages as well
as challenges faced.

1. INTRODUCTION

Space missions are experiencing a transformation on how
their operations are conducted. Classically, experiments
were executed by following a static, pre-flight designed
list of commands. Now, on-board computers analyze sen-
sor data and react according to the current situation. This
way, a system’s on-board software can handle unexpected
situations and act on cases where data was not yet avail-
able before launch. However, this kind of automatic plan-
ning poses new requirements for on-board data process-
ing. Large amounts of sensor data need to be processed
in real-time. In addition to that, some applications, such
as image processing, require high computational power

on board.

Developing end-to-end data processing pipelines in one
system is challenging as components from different
providers have to be integrated and connected. Further-
more, design changes have to be incorporated into source
code, documentation, and also into the build configura-
tion. Model-driven software development (MDSD) sup-
ports this process by generating communication and in-
terface code from a central data model [1]. Engineers
can apply design changes to the model and regenerate
updated artifacts from it. The model can also be used
to validate the developed design and acts as a communi-
cation method within the team. However, in data-/event-
driven systems, general purpose modeling languages are
not suited to MDSD activities [1]. To properly config-
ure when components are executed, the model language
needs to incorporate domain-specific aspects.

Some on-board software, such as attitude and orbit con-
trol system (AOCS), and the majority of on-board data
processing applications can be implemented as a network
of data-driven computational nodes. In such an imple-
mentation, a computational node starts execution when
input data are available and does not need to explicitly
wait for the predecessor computational nodes to finish.
Also, computational nodes exchange data via data con-
tainers which represent interfaces between them. The
computational nodes are known as tasks and data con-
tainers are referred to as channels, hence, the model is
known as task-channel model. This model has potential
for modularity, enabling reusability of developed appli-
cations. The Tasking Framework [2] is an open-source1

C++ library to develop on-board software using the task-
channel model. It provides abstract classes with vir-
tual methods following the event-driven programming
paradigm. With Tasking Framework, an application is
realized by a directed graph of connected tasks and chan-
nels. To generate source code for an application based on
Tasking Framework, a model for MDSD needs to depict
this graph.

In this paper, we present such a modeling language for
event-/data-driven software systems, implemented based
on the open source tool Virtual Satellite2. Virtual Satel-
lite aims to model systems throughout their complete life-

1https://github.com/DLR-SC/tasking-framework
2https://github.com/virtualsatellite/

2

cycle [3]. Incorporating early-phase system design mod-
els into the MDSD methodology allows reuse of exist-
ing system model artifacts. For the model-driven devel-
opment, this further improves productivity and maintain-
ability.

Remainder of this paper is structured as follows: the next
section introduces relevant literature, Section 3 presents
our concept and implementation, and Section 4 evalu-
ates our modeling approach by applying it to a example
project from the space domain. Finally, Section 5 con-
cludes the paper with a future outlook.

2. BACKGROUND AND RELATED WORK

In this section, we introduce basics for on-board data pro-
cessing and model-driven software engineering.

2.1. On-Board Data Processing

Aerospace projects have started to include more au-
tonomous systems or subsystems to carry out missions,
e.g., on distant celestial bodies. Such systems require
more on-board data processing, which demands high per-
formance computing resources. Multi-core platforms
are promising to fulfill these computational require-
ments [4] as they provide high performance with low
power consumption in comparison to high frequency uni-
processors. However, it is often difficult to write applica-
tions that execute in parallel. This adds more complexity
to the design and implementation processes of on-board
data processing applications.

Software that process data onboard can be modeled as
a directed data-flow graph, where vertices represent pro-
cessing nodes and data are forwarded to the next node in
the pipeline. Processing nodes work concurrently. They
do not have to wait for preceding nodes to finish their
job. They can start executing as soon as their first in-
put data is available. Therefore, these applications have
a high potential for modularity and parallelism. Imple-
menting concurrency in an application mitigates the mi-
gration to multi-core platforms. And, exploiting the mod-
ularity improves the re-usability of the developed appli-
cations. Such a data-driven approach has been used to de-
velop on-board software that executes and controls com-
plex experiments on board the International Space Station
(ISS) [5].

In some aerospace missions, sensor data are processed
on board during critical operations, such as autonomous
take-off and landing [6]. To ensure the safety and relia-
bility of the mission, on-board data processing software
should be real-time capable and may need to guarantee
the availability of needed data on time. For example,
during the autonomous landing operation [6] or on-board
rendezvous navigation [7]. For such safety critical ap-
plications, engineers need to perform timing analysis of

the software and ensure that end-to-end real-time con-
straints are met. Timing analysis should also cope with
the aforementioned software complexity caused due to
parallelism [8]. Consequently, increasing on-board data
processing in current and future space missions intro-
duces more challenges in the development of onboard
software.

2.2. Model-Driven Engineering

The European Space Agency (ESA) has developed a tool
chain for MDSD called The ASSERT Set of Tools for
Engineering (TASTE) [9]. TASTE focuses on the error-
prone process of integrating different software compo-
nents. It uses a textual language (ASN.1) 3 to define data
types and a graphical language (AADL) to model the sys-
tem architecture [9]. The TASTE generator not only gen-
erates source code, but also produces build configuration
files for the system.

ESA, furthermore, has developed a reference architecture
for space systems [10]. It contains a modeling language,
namely, ”Space Component Model” [11] to specify dif-
ferent components of the system. The reference archi-
tecture does not impose any specific tool, but provides a
prototype implementation based on the Eclipse Modeling
Framework (EMF)4. The reference architecture’s model-
ing environment is based on several domain specific lan-
guages (DSLs) and also provides code generation capa-
bilities [11].

NASA Jet Propulsion Laboratory (JPL) investigated
methodologies to reduce the learning overhead of
SysML [12]. They suggest to build DSLs based on
SysML and to add domain-specific notations to the
model. The generic nature of the Unified Modeling Lan-
guage (UML) or SysML allows users to model various
different kinds of systems [1]. However, this generic na-
ture of these modeling languages not only increases the
learning effort for users but it also adds difficulties in
the model-driven development (MDD) process with code
generation [1]. Gray and Rumpe [13] also observed dif-
ficulties in using UML and SysML with domain experts
that are not familiar with modeling in their daily work.
They suggest investigating whether it is more adequate
to design a DSL from scratch rather than customizing an
existing general purpose language.

In a case study, Visser [14] investigated domain-specific
engineering. He collected guidelines and patterns on how
DSLs can be implemented. Before developing a DSL, he
suggests to do a domain analysis and to investigate which
aspects of the system have to be modeled. Atkinson and
Kühne [15] describe different forms of meta-modeling
for MDD. They also defined a set of technical require-
ments that MDD techniques should support. They ar-
gued that besides available concepts for modeling, MDD
infrastructure has to define notations to depict models,

3https://www.itu.int/rec/T-REC-X.680/
4https://www.eclipse.org/modeling/emf/

3

specify how the model entities represent the real-world
elements, and also provide concepts to facilitate user ex-
tensions.

3. TASKING MODELING LANGUAGE

As highlighted in Section 2.1, developing software for
on-board data processing poses new challenges. This sec-
tion analyses requirements for a model-based solution to
these challenges and presents the design of our modeling
environment.

3.1. Domain Analysis

As shown in Figure 1, on-board data processing is highly
data-driven. Sensors produce data, which is then ana-
lyzed by the processing components, then actuators are
controlled accordingly. The development of such sys-
tems faces some challenges: firstly, the system com-
ponents (sensors, processing components, actuators) are
usually developed by different institutions or obtained
from external suppliers. Thus, software for these com-
ponents might follow different patterns, guidelines, or
coding styles. However, they have to be integrated to-
gether for the whole system to run. Secondly, compo-
nents themselves and their interactions are subject to fre-
quent changes during the course of the development. This
might yield changes in the interface description of these
components. Furthermore, the processing pipeline might
need adaptation, for example, to incorporate additional
components or to remove the deleted ones. All of these
changes need to be reflected in multiple places, for in-
stance, in the interface documentation, in the software
architecture and subsequent components. Model-based
approaches can alleviate these challenges. As the cen-
tral point of truth, the model takes all modifications and
generates required artifacts such as documents and source
code. Moreover, component developers are notified about
the respective changes. This helps to eliminate inconsis-
tencies in the development process and helps to resolve
misunderstanding between the development team mem-
bers caused by the differences of perspective. However,
to benefit from modeling through improved productivity
and communication within data-driven projects, models
have to focus on certain aspects. We elaborate on these
aspects in the following paragraphs.

System components consists of processing software that
creates, analyzes, or handles data. Its interface descrip-
tions have to be standardized and specified in an unam-
biguous way. This allows engineers to incorporate de-
vices from different research institutions and commercial
vendors. Additionally, the software should be as modu-
lar as possible so that adding new elements or removing
the existing ones becomes easier. Furthermore, causality
of components has to be defined clearly to reduce side
effects due to any change.

Figure 1. Software for on-board data processing usu-
ally contains software components for sensors, process-
ing components and actuators.

Data flow is the central aspect of the on-board data pro-
cessing software. It describes how components are con-
nected and how they communicate. Important are again
coherent interface descriptions. For a proper data flow,
related data specifications are of specific relevance. They
do not just define type and range of valid data but may
contain specific information as well, e.g., data bandwidth.

Data input events should be configurable to trigger com-
ponents once all necessary input data are available. This
way, the processing pipeline of the on-board software can
handle data as fast as possible.

Extensibility is needed to consider project-specific re-
quirements. As a modeling language for on-board soft-
ware, it is tailored to a specific domain. However, differ-
ent on-board software solutions require individual details
in the model. E.g. a project-specific network implemen-
tation could require some details in the model that has to
be specified for each channel. A modeling language that
aims to be used in multiple projects needs to be customiz-
able to specific requirements.

As a result, we pose the following requirements to the
modeling environment for on-board data processing:

R.1 The environment must allow the specification of
component interfaces in a data model

R.2 The modeling language must allow the specification
of the data flow.

R.3 Execution event handling shall be supported.

R.4 The environment shall be extensible to specific
project requirements.

3.2. Concept

A model is an abstraction of a complex system with fo-
cus on the relevant aspects for a specialized purpose. To
reduce the learning overhead of the modeling language,
it should be specialized to its purpose as much as possi-
ble. To model the data flow and event mechanism of the
data processing software, we decided to develop a DSL.

4

double FLOAT

Name Type

uint32_t INTEGER

uint8_t INTEGER

Datatype CameraImage
 extends AbstractType {
 dataArray : uint8_t [1024];
}

Datatype AbstractType {
 timeStamp : uint8_t;
}

Camera 1

Camera 2

ImgAnalysis

Components

Channel <CameraImage>

Component Camera {
 outputs{
 image : CameraImage
 }
}

Component ImgAnlysis {
 inputs{
 image : CameraImage
 }
}

Atomic Types Data Types

Data Flow

Component Definition

Figure 2. Different types of model representation: Atomic
types are specified in a list, data types and components in
a textual DSL and the data flow in a graphical diagram.

In contrast to general purpose languages, such as UML
or SysML, a DSL only contains aspects that are relevant
to the modeling purpose.

Model notation. Developing a DSL allows one to spec-
ify a concrete syntax. Different aspects of the model can
be rendered individually in an appropriate way. Model-
ing interfaces and the system data flow require specifi-
cation of applicable data types first. As shown in Fig-
ure 2, a simple way to define data types is to specify
required atomic types in a list, and then, using them to
create composite types using a textual DSL. Similar to
programming languages, textual DSLs can also have key-
words to specify properties, such as, multiplicity, inher-
itance, etc. In combination with editors featuring auto-
completion, textual DSLs are relatively straightforward
to use. They provide a clear and flexible interface for
users to define model elements, especially, when a graph-
ical layout is not necessary. For the simplicity and clarity,
besides data-type definitions, the specification of compo-
nent interfaces are also done using a textual language.

The data flow connects the different software components
and, thereby, provides a good system overview. As shown
in Figure 2, to facilitate and support this overview, the
data flow is modeled in a graphical diagram. Here, com-
ponents are represented as nodes; its inputs and outputs
are shown as ports on these nodes. It is, then, possible to
connect these components via edges. To model n:m con-
nections and to specify the storage/data interface of these
links, users can add channels to the diagram.

The different languages for specification of data types,
component interfaces, and data flow are part of a com-
mon data model. Each language represents a view on

Channel

Event

Compnent1

Component2

SubscriberList Inputs

Input
Data / Signal

Periodical
Activiation

Component1

Component2

3 Signals

Status

3

3

4

3

Threshold

Status:

Figure 3. Components are executed event-based. Com-
ponent inputs subscribe to update events of data channels
or other event sources. Once the defined threshold of sig-
nals (e.g. number of data items) is reached, the input gets
activated. When all inputs are active, the component gets
executed.

this shared model. For instance, data types are specified
in one language and used in others. Editors for the dif-
ferent views integrate changes into the common model.
This way, the views and editors are synchronized. For
example, if a component has two inputs and one output,
its instances in the diagram will automatically have the
respective number of ports.

Event handling. Components need to be executed once
the required input data are available. The configuration of
data events and the resulting generated code are based on
the Tasking Framework. As shown in Figure 3, compo-
nents subscribe to their input channels. This way, they
receive notifications about when data are available. A
threshold number per input defines how many data items
are required for an execution of the component. Once
this threshold is reached, the corresponding input is acti-
vated. When all inputs are activated, the component gets
executed. Input data can also be marked as final or op-
tional: Final inputs automatically execute the component
if activated, regardless of the availability of other data.
Optional inputs are not required for an execution of the
component. Besides data events, it is also possible to
trigger components with bare signals, such as periodic
timers.

Model checking. System models enable to find issues
and design flaws early in the engineering process. The
Tasking Modeling Language (TML) validates that com-
munication channels have compatible interfaces, param-
eters are filled with correct value types, and units are set
correctly. Furthermore, users are notified if components
are not connected properly.

Artifact generation. Generators create source code,
documentation, and configuration files from the model.
The generation is based on templates with place-holders
that are filled with data from the model. To improve the
integration of software components, the source code gen-
erator creates interface classes and the communication

5

Task

init()

execute()

loadInputs()

sendOutputs()

loadParams()

Component-API

execute(Inputs, Outputs)

init(Parameters)

Figure 4. Generated functionality is added into abstract
classes, manual customization is implemented in derived
classes. If the model is changed, abstract classes are re-
generated; the derived classes are not.

code. This way, if new elements have to be integrated
into the processing pipeline, generated source code auto-
matically re-routes the data.

The implementation of multi-threaded source code for
on-board real-time applications can be challenging.
To simplify the software development, the modeling
methodology provides a simplified user front-end for the
Tasking Framework. Users should be able to create data-
and event-driven on-board software without being an ex-
pert in multi-threaded programming. To achieve this,
TML abstracts from the complexity of the executable
source code. Users only see details that are necessary
to create and configure the data flow and the event mech-
anism of the system. As shown in Figure 4, the code gen-
erator prepares incoming data and parameters, and pro-
vides a simplified API to components. To enable cus-
tomization of the generated source code, the generator
implements the generation gap pattern [16]. This pattern
separates generated logic from the custom code using the
inheritance mechanism. Abstract classes are re-generated
whenever the model is updated, whereas, the user mod-
ified code in derived classes is not over-written by the
generator.

Extensibility. Extensibility of TML is implemented on
multiple levels. First, the model itself can be extended
with new elements. Therefore, we use the meta-modeling
pattern of Promotion [17]. Channel and component
types, dynamically defined in the model, can be instan-
tiated in the component diagram. The second level is to
customize the code generator by adapting the code tem-
plates to specific project-needs. As already mentioned
before, the generation gap pattern enables developers to
further customize the generated code.

3.3. Implementation

TML is built as an extension of Virtual Satellite, which is
an extensible model-based systems engineering (MBSE)

Data

Components

Task Graph

Figure 5. Software for on-board data processing usu-
ally contains software components for sensors, process-
ing components and for actuators.

tool developed and maintained by DLR [3]. Integration
of TML in such a systems engineering tool allows engi-
neers to reuse already modeled artifacts from early-phase
design specifications.

Virtual Satellite is build on top of the Eclipse modeling
environment. It assists software engineering by using
the MDSD process to generate user interface (UI) snip-
pets and other software artifacts automatically from the
model. The EMF framework provides code generators
for producing Java interface and implementation classes
for all model entities and their editors. Besides that, the
Virtual Satellite layer provides further customization of
the model editors, UI snippets, and improves the model
validation and verification capabilities. With the help of
model validators, Virtual Satellite assists to improve the
overall quality of the software product. Furthermore, it
also supports backward compatibility of the model by
providing migrators.

Attributes of TML model elements, such as the name,
can be modified using generated UI editors. Furthermore,
as shown in Figure 5, TML provides customized Xtext5
editors for specifying data-types, components, and chan-
nel definitions. Keywords, auto-formatting, and syntax
highlighting of the DSL editors improve user experience.
The diagram editor for the data flow is implemented with
the Graphiti6 framework in Eclipse. Graphiti provides a
simple API to create and synchronize model domain ob-
jects with their diagram representations. Via drag and
drop, users can instantiate tasks, channels, or time-events
and connect them together using links. Furthermore, a
double-click on any diagram element opens the respec-
tive UI editor, where all of its attributes can be modified.

5https://www.eclipse.org/Xtext/
6https://www.eclipse.org/graphiti/

6

Periodic
Event

IMU Driver
Thread

Component Objects
for CameraDrivers

LIFO Channel

DoubleBuffer
Channels

100Hz

100Hz

100Hz

100Hz

10Hz

10Hz
5Hz

10Hz

10Hz

2 0

0

Activation Threshold

Figure 6. TML component diagram showing the architecture for the optical navigation system of the project ATON [1].
Cameras are triggered periodically and provide input for other processing components. A navigation filter fuses all
processing results and creates an estimated position which is logged and sent to the flight controller.

4. CASE STUDY

To evaluate the modeling capabilities of TML, we re-
implemented the SysML model of the project ATON
(Autonomous Terrain-based Optical Navigation) using
TML [1]. Figure 6 shows the component diagram of this
implementation. The general architecture is data/event-
driven, i.e., processing components (also referred to as
tasks) can be executed as soon as their required input data
is available, alternatively, they can also be triggered by
periodic events. To control the frequency of a task, user
can specify an activation threshold to its input. The ac-
tivation threshold specifies how many input samples are
required to trigger the task. For instance, cameras shown
in Figure 6 are triggered by a periodic event of 10 Hz and
their output images are consumed by two tasks. In the
example use case, the crater navigator is only executed
at the rate of 5 Hertz (Hz) as it is only activated by ev-
ery second image. The inertial measurement unit (IMU)
runs as a non-Tasking framework thread at the rate of 100
Hz. The activation threshold of ”0” on two navigator fil-
ter inputs marks them as optional. Optional input data
are used if they are available, i.e., tasks can be executed
without them. As a result, frequency of the navigation
filter and the IMU in the given example becomes equal,
because, every data produced by the IMU will trigger the
navigation filter.

4.1. Evaluation of the Requirements

The data flow diagram in Figure 6 shows how require-
ment R.1 and R.2 are fulfilled. The data flow is pre-
sented in the graphical diagram, showing all component
instances and their connections. Furthermore, component
types are represented in a textual language. The event
handling (Requirement R.3) is implemented through the
trigger components and input activation mechanism.

The case study also demonstrates how extensibility,
as demanded by Requirement R.4, is achieved. The

use case requires a customized data storage imple-
mentation, which also needs to be configured from
the model. Figure 7 shows how the new channel
type SynchTaskMessageChannel is modeled. The
channel along with its parameters is instantiated in the
component diagram (upper-right part of Figure 7). The
TML generator creates base classes for these kinds of
type extensions and instantiates them in the object model
as specified in the component diagram. Parameter values,
as specified in the model, are added to the generated base
classes (bottom-left part of Figure 7). And their value is
added in the object instances (bottom-right part of Fig-
ure 7).

As a result, the implementation of MDSD meets all our
requirements.

4.2. Comparison with the SysML Solution

The TML was developed as a successor of the predeces-
sor based on SysML [1]. Even though the former ap-
proach increased productivity of the development pro-
cess, a conclusion of the work was that the modeling lan-
guage should be improved. TML represents the next iter-
ation of the modeling language. It is explicitly designed
for the purpose of data-/event-driven systems. A com-
ponent diagram in UML or a block diagram in SysML,
both allow more than 40 different elements to be added.
In contrast to that, the TML component diagram allows
only four basic components (triggers, tasks, channels,
and connections). Inputs and outputs of the different pro-
cessing units are incorporated automatically. Thereby,
TML helps to maintain consistency and removes ambi-
guity posed by the general-purpose modeling languages.

The concise modeling approach of TML has significant
influence on the code generator as well. This is depicted
in Figure 8. Unlike the one in SysML, TML generator
does not have to transform the general-purpose model-
ing elements into the on-board data processing domain.
Furthermore, as all model elements in TML have a direct

7

Instantiation with static Parameter: (Template)

Instantiation with dynamic Parameter: (Constructor)

Code GenerationDefinition Instance

Figure 7. The channel type extension mechanism. Channel types can define parameters that are available in its model
instance and also in the generated code. The implementation type ’CUSTOM’ creates base classes for its implementation
and instantiates this class in the system’s object model.

Figure 8. Comparison of the code generator with
UML/SysML and TML model. Generation from the TML
model needs less mapping and transformation logic. It
furthermore contains more domain-specific validation of
properties.

mapping to the generated source code, their parameters
have clearly defined constraints, which are verified and
validated directly in the model.

5. CONCLUSION AND FUTURE WORK

Sensor data handling, analysis, and processing of data in
on-board software requires consideration of the system’s
data flow and event mechanism. This work presents a lan-
guage for event and data-driven software systems. TML
incorporates a set of textual and graphical DSLs, which
allow system engineers to model complex event-driven
software systems. The textual DSLs in TML provide a
strong-typed syntax to define data types and system com-
ponents, whereas a graphical DSL enables users to design
the composition and data flow of the system. The TML
environment facilitates MDSD by incorporating a code

generator which generates executable C++ source-code,
unit tests, its build configuration and documentation. This
way, the model acts as a single point of truth, and changes
on the data flow can be handled by re-generation. By de-
fault, the code generator utilizes the Tasking Framework,
an open-source C++ software execution platform devel-
oped by DLR. This allows software modules to run con-
currently in separate tasks, exchange data between them
via channels, and to schedule task-execution based on
events. TML is focused on even-driven systems, nev-
ertheless, its infrastructure and models are designed to
be extended and customized to specific mission require-
ments. It provides three levels of extension mechanism:
firstly, new components, such as channel types and pa-
rameters, can be added to the model dynamically. Sec-
ondly, the code generator can be customized by extend-
ing or implementing new code templates. This makes it
possible for TML to support new execution environments
and even new programming languages. Furthermore, the
generated code is designed to be extended by manually
written code. This combination of a modeling language,
customized to data-flow oriented systems with a highly
extensible artifact generation, enables effective support
for the development of on-board software.

Future work will focus on extending formal verification
of TML models. Goal is to search for potential dead-
and live-locks, and to analyze and improve the data flow
of the system. Projects building up on TML are investi-
gating reconfiguration planning of an on-board software
modeled using TML [18]. TML will also evolve and im-
prove by facilitating new features of the DLR Tasking
Framework.

REFERENCES

[1] Tobias Franz, Daniel Lüdtke, Olaf Maibaum, and
Andreas Gerndt. Model-based software engineer-

8

ing for an optical navigation system for spacecraft.
CEAS Space Journal, 10(2):147–156, 2018.

[2] Zain Alabedin Haj Hammadeh, Tobias Franz, Olaf
Maibaum, Andreas Gerndt, and Daniel Lüdtke.
Event-driven multithreading execution platform for
real-time on-board software systems. In 15th an-
nual workshop on Operating Systems Platforms for
Embedded Real-Time applications, pages 29–34,
Juli 2019.

[3] Philipp. M. Fischer, Daniel. Lüdtke, Caroline.
Lange, Frank. C-. Roshani, Frank. Dannemann, and
Andreas. Gerndt. Implementing model-based sys-
tem engineering for the whole lifecycle of a space-
craft. CEAS Space Journal, 9(3):351–365, 2017.

[4] Guillermo Ortega and Roger Jansson. GNC
application cases needing multi-core processors.
https://indico.esa.int/event/62/contributions/2787,
October 2011. 5th ESA Workshop on Avionics
Data, Control and Software Systems (ADCSS).

[5] Arnau Prat, Jan Sommer, Ayush Mani Nepal, To-
bias Franz, Hauke Müntinga, Andreas Gerndt, and
Daniel Lüdtke. The beccal experiment design and
control software. In Proceedings of the 2021 IEEE
Aerospace Conference, pages 1–9, 2021.

[6] Sergio Chiesa, Sara Cresto Aleina, Giovanni Anto-
nio Di Meo, Roberta Fusaro, and Nicole Viola. Au-
tonomous take-off and landing for unmanned air-
craft system: Risk and safety analysis. In 29th
Congress of the International Council of the Aero-
nautical Sciences, September 2014.

[7] Eicke-Alexander Risse, Kurt Schwenk, Heike Ben-
ninghoff, and Florian Rems. Guidance, navi-
gation and control for autonomous close-range-
rendezvous. In Deutscher Luft- und Raum-
fahrtkongress 2020, October 2020.

[8] Xavier Palomo, Mikel Fernandez, Sylvain Gir-
bal, Enrico Mezzetti, Jaume Abella, Francisco J.
Cazorla, and Laurent Rioux. Tracing Hard-
ware Monitors in the GR712RC Multicore Plat-
form: Challenges and Lessons Learnt from a
Space Case Study. In Marcus Völp, editor,
32nd Euromicro Conference on Real-Time Systems
(ECRTS 2020), volume 165 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages
15:1–15:25, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik.

[9] Eric Conquet, Maxime Perrotin, Pierre Dissaux,
Thanassis Tsiodras, and Jérôme Hugues. The taste
toolset: turning human designed heterogeneous sys-
tems into computer built homogeneous software. In
European Congress on Embedded Real-Time Soft-
ware (ERTS 2010), Toulouse, France, May 2010.

[10] Elena Alaña, Javier Herrero, Santiago Urueña,
Krystyna Macioszek, and Daniel Silveira. A ref-
erence architecture for space systems. In Proceed-
ings of the 12th European Conference on Software
Architecture: Companion Proceedings, pages 1–2,
2018.

[11] Marco Panunzio. Specification of the metamodel
for the osra component model. ESA, Tech. Rep.,
2017.

[12] Bjorn Cole, Greg Dubos, Payam Banazadeh,
Jonathan Reh, Kelley Case, Yeou-Fang Wang, Su-
san Jones, and Frank Picha. Domain-specific lan-
guages and diagram customization for a concurrent
engineering environment. In 2013 IEEE Aerospace
Conference, pages 1–12. IEEE, 2013.

[13] Jeff Gray and Bernhard Rumpe. UML customiza-
tion versus domain-specific languages. Software &
Systems Modeling, 17(3):713–714, 2018.

[14] Eelco Visser. Webdsl: A case study in domain-
specific language engineering. In International
summer school on generative and transformational
techniques in software engineering, pages 291–373.
Springer, 2007.

[15] Colin Atkinson and Thomas Kuhne. Model-driven
development: a metamodeling foundation. IEEE
software, 20(5):36–41, 2003.

[16] Martin Fowler. Generation gap. In Domain-Specific
Languages, page 571–573. Addison-Wesley Signa-
ture, 2010.

[17] Juan De Lara, Esther Guerra, and Jesús Sánchez
Cuadrado. When and how to use multilevel mod-
elling. ACM Transactions on Software Engineering
and Methodology (TOSEM), 24(2):1–46, 2014.

[18] Andrii Kovalov, Tobias Franz, Hannes Watolla,
Vishav Vishav, Andreas Gerndt, and Daniel Lüdtke.
Model-based reconfiguration planning for a dis-
tributed on-board computer. In Proceedings of the
12th System Analysis and Modelling Conference,
pages 55–62, 2020.

