Journal article Open Access

Hypocoercivity and sub-exponential local equilibria

Bouin, E.; Dolbeault, J.; Lafleche, L.; Schmeiser, C.

MARC21 XML Export

<?xml version='1.0' encoding='UTF-8'?>
<record xmlns="">
  <controlfield tag="005">20210923134833.0</controlfield>
  <controlfield tag="001">5521949</controlfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Dolbeault, J.</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Lafleche, L.</subfield>
  <datafield tag="700" ind1=" " ind2=" ">
    <subfield code="a">Schmeiser, C.</subfield>
  <datafield tag="856" ind1="4" ind2=" ">
    <subfield code="s">529900</subfield>
    <subfield code="z">md5:578813838d44db5a0a952f1b344db67d</subfield>
    <subfield code="u"></subfield>
  <datafield tag="542" ind1=" " ind2=" ">
    <subfield code="l">open</subfield>
  <datafield tag="260" ind1=" " ind2=" ">
    <subfield code="c">2020-11-13</subfield>
  <datafield tag="909" ind1="C" ind2="O">
    <subfield code="p">openaire</subfield>
    <subfield code="o"></subfield>
  <datafield tag="909" ind1="C" ind2="4">
    <subfield code="p">Monatshefte für Mathematik</subfield>
  <datafield tag="100" ind1=" " ind2=" ">
    <subfield code="a">Bouin, E.</subfield>
  <datafield tag="245" ind1=" " ind2=" ">
    <subfield code="a">Hypocoercivity and sub-exponential local equilibria</subfield>
  <datafield tag="540" ind1=" " ind2=" ">
    <subfield code="a">Free for private use; right holder retains other rights, including distribution</subfield>
  <datafield tag="650" ind1="1" ind2="7">
    <subfield code="a">cc-by</subfield>
    <subfield code="2"></subfield>
  <datafield tag="520" ind1=" " ind2=" ">
    <subfield code="a">Hypocoercivity methods are applied to linear kinetic equations without any space confinement, when local equilibria have a sub-exponential decay. By Nash type estimates, global rates of decay are obtained, which reflect the behavior of the heat equation obtained in the diffusion limit. The method applies to Fokker-Planck and scattering collision operators. The main tools are a weighted Poincaré inequality (in the Fokker-Planck case) and norms with various weights. The advantage of weighted Poincaré inequalities compared to the more classical weak Poincaré inequalities is that the description of the convergence rates to the local equilibrium does not require extra regularity assumptions to cover the transition from super-exponential and exponential local equilibria to sub-exponential local equilibria.</subfield>
  <datafield tag="024" ind1=" " ind2=" ">
    <subfield code="a">10.1007/s00605-020-01483-8</subfield>
    <subfield code="2">doi</subfield>
  <datafield tag="980" ind1=" " ind2=" ">
    <subfield code="a">publication</subfield>
    <subfield code="b">article</subfield>
Views 24
Downloads 19
Data volume 10.1 MB
Unique views 19
Unique downloads 19


Cite as