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ABSTRACT

Artificial Intelligence (AI) is spreading into every field
of application, achieving, in some cases, better perfor-
mance than ordinary algorithms. One of the most suc-
cessful areas in which AI has introduced innovation is
computer vision, outperforming the older predecessor al-
gorithms. However, the computational capacity required
by those algorithms is still a major limitation to the adop-
tion of these techniques, especially in extreme cutting-
edge applications such as space. The ICU4SAT em-
bedded system presented in this paper aims at changing
the rules of image/data management and processing on
board satellites, overcoming the drawbacks of the cur-
rent limitations both at technological and industrial level.
The ICU4SAT system leverages on three highly innova-
tive, open-source components, which are integrated into
a modular and flexible FPGA. The core of the system
is a soft-programmable GPU-like hardware, called soft-
GPU, which can analyse and process the data acquired
directly on-board, and programming it via high-level ar-
tificial intelligence and computer vision frameworks. In
addition, the soft-GPU can be fully re-configured and
re-targeted according to missions or monitoring needs,
even temporarily, fitting perfectly with mission objec-
tives. At a broader industry level, the commercial avail-
ability of such a solution would translate into more room
for Small Medium Enterprises for leading independently
space missions and projects, expanding business oppor-
tunities in the space domain. Finally, the innovation pro-
vided by the ICU4SAT can be a key element in the Satel-
lite as a Service paradigms, where the Artificial Intelli-
gence and smart applications play a key role.
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1. INTRODUCTION

In recent years, interest in space missions and their pos-
sible applications has been growing exponentially in the
wake of the new space economy. This represents a pro-
found transformation of the space field, which aims to
be integrated into various industrial and economic sectors

such as transport, aviation, and meteorology. In particu-
lar, the use of small- micro-satellites has brought a new
vision in the Earth-Observation (EO) missions: SATel-
lite as a Service (SATaaS). This paradigm sees satellites
as reusable resources, not tied to a purpose, but as re-
configurable devices, that simplify access to space even
for medium and small companies that cannot afford to
build their own satellites. To make the most out of this
paradigm, new methodologies for implementing and ex-
ploiting satellites are needed, allowing fully customis-
ability by the end user even after the mission has started.
AI algorithms represent the most viable solution to pro-
vide great performance, easy customisation, and minor
time-to-market for the new generation mission payloads.
In fact, they have already shown their adaptability in
several applications for different purposes, such as im-
age segmentation, signal analysis, classification, and re-
gression. On the other hand, these algorithms require
high performance hardware devices due to the quantity
of operations involved. To overcome the low computa-
tional capacity, dedicated COTS hardware accelerators
have been deployed, obtaining a good trade-off between
inference speed and power consumption, but they are not
designed to be flexible or used in space environment. In-
deed, there is a lack of standardised and efficient general-
purpose solutions to face this issue and industries are still
in most cases designing and developing custom ad-hoc
Instrument Control & Data Processing Units (ICU-DPU)
which can be usually employed only for the single mis-
sion they have been designed for. ICU4SAT is the game
changer, providing reconfigurability and low power con-
sumption embedded in an FPGA technology. It provides
high performance through customised hardware design
implementation, and fast deployment time thanks to its
dedicated software compiler. In addition, by exploit-
ing radiation hardener FPGA, ICU4SAT is robust to the
harsh space environment. As follow, a briefly introduc-
tion on HW accelerators and AI workflow is described in
Sec.2. The detailed information regarding the ICU4SAT
and the AI software workflow generally used is described
in Sec.3. Finally, results and conclusion are reported re-
spectively on Sec.4 and Sec.5.



2. AI AND HW ACCELLERATORS

The high number of operations involved in AI algorithms
has limited the spread of these techniques in sectors
where the power budget matters. Historically, AI mod-
els were trained and run only on GPU-farms or data-
centres, principally focusing on the performance at the
cost of poor usability and portability on the embedded
world. On the other hand, lite version of state-of-the-art
AI algorithms have achieved great performance, although
lower than the original ones. An example is YOLOv3 [1],
whose lite version is called TinyYOLOv3 [2] and is ded-
icated to embedded devices with limited memory storage
and computational power.

2.1. HW accelerators

The COTS accelerators are easily classifiable by their
processors[3, 4] as: VPU, TPU, FPGA, and the most
known GPU. The first two processors have the best per-
formance in terms of power per inference since they have
been devised to speed up inferences. Instead, FPGAs and
GPUs are more general purposes and they are the most
powerful in term of computational capabilities.

A VPU: VPUs represent a new class of processors able
to increase the speed of visual processing as CNN,
SIFT [5], Sobel and similar. The most promis-
ing accelerators in this category are the Intel Mo-
vidius Myriad VPU currently available in two ver-
sions: the Myriad 2 [6] and the Myriad-X. The core
of both processors is the computational engine that
uses groups of specialised vectors of Very Long In-
struction Word (VLIW) processors called SHAVEs
capable of consuming only a few watts (W) [7].
Myriad 2 has 12 SHAVEs while the Myriad-X has
18 SHAVEs. They show better performance, when
accelerating CNNs model or other supported layers,
than mobile CPUs or general-purpose low-power
processors.
To reduce the computational effort, all the registers
and operation within the processor use 16 bits float-
ing point arithmetic. Moreover, the Myriad 2 pro-
cessor has already passed the preliminary radiation
tests at CERN [8].

B TPU: TPU is an innovative hardware accelerator
dedicated to a particular data structure: Tensors [9].
Tensors are a base type of the TensorFlow frame-
work [10] developed by Google. The standard struc-
tures and the dedicate libraries for GPU and VPU
make tensors and consequently TensorFlow very
powerful tools in the Machine Learning (ML) world.
The Coral Edge TPU is an example of an edge
hardware accelerator whose performances are very
promising, especially in the static images process-
ing acceleration e.g., CNN, FCN. The best perfor-
mances of this hardware platform are reached ex-
ploiting TensorFlow Lite and 8 bits integer quanti-

zation, even if the latter could have a big impact on
the model metrics.

C FPGA: FPGAs are extremely flexible hardware so-
lutions, which could be completely customised.
This customizability, however, represents the bottle-
neck for a fast deployment [11].
In fact, the use of an FPGA requires many additional
design steps compared to COTS ASIC, including the
design of the architecture of the hardware accelera-
tor and the quantization of the model, for approaches
exploiting fixed-point representation.
FPGAs are produced by numerous companies such
as Xilinx, MicroSemi, and Intel. Some FPGAs,
like RTG4 or Brave, are also radiation-hard/tolerant;
which means these boards can tolerate the radiations
suffered during the life of the mission as explained
in [12, 13].

D GPU: GPUs [14] are the most widely used to carry
out both inference and training process of the typi-
cal ML models. Their computational power is en-
trusted to the parallel structure of the hardware that
computes operations among matrices at a very high
frequency. Nvidia and AMD lead the market of the
GPU for ML training using respectively CUDA Core
(Nvidia) and ROCm (AMD), as shown in [3, 4].
Moreover, several frameworks allow to use the po-
tentiality offered by GPUs, including TensorFlow,
TensorFlow Lite, and PyTorch. This hardware can
train, infer, quantize the model and run inferences
supporting a wide range of computational accura-
cies e.g., 32 and 16 bits floating point, 16, 8, 4, and
2 bits integer. On the other hand, these solutions
consume huge amount of power, reaching a peak of
200 W and therefore cannot be used for on the edge
applications.

2.2. Artificial Intelligence workflow

The greatest limitation of these accelerators is the soft-
ware developing approach. In fact, the actual COTS hard-
ware accelerators use dedicated tools to bring the algo-
rithm on the hardware. Generally, to port a state-of-the-
art algorithm in an embedded hardware device or FPGA
requires the following three steps:

1. Formally description of the network using a NN
framework (TensorFlow, Pyorch, etc.): The network
is described layer by layer using a dedicated frame-
work and trained exploiting very high speed hard-
ware such as GPU. The generated weights are then
stored in 32/64 bits floating point vector files.

2. Quantize the weights of the network defined at step
1. The 32/64 bits floating point arithmetic does not
represent an optimal solution to be integrated within
target hardware due to the limited number of re-
sources available. To reduce the number of bits used
to represent each weight, three main types of quan-
tization processes are available in literature:



Figure 1. High level soft-GPU system architecture.

a. Quantization aware training which introduces
the internal constraints of the target device as
part of the network flow in the training process.

b. Post-training quantization which quantizes the
weights of the network trading-off the mini-
mum number of integer bits per layer and the
model accuracy.

c. Post-training statistical quantization which ex-
ploits the same procedure of step 2.b but it
also considers the statistical properties of the
dataset.

3. Port the network trained at step 2 into the target de-
vice.

This procedure could lead to possible failures due to
the non compatibility with the target hardware e.g., not
enough memory, higher inference time, or drastically re-
duction of the accuracy of the algorithms.

3. ICU4SAT

ICU4SAT aims to change the drawbacks of the actual
systems by redesigning both hardware and software. It
is based on three highly innovative components: RISC-
V, soft-GPU, and SpaceFibre/SpaceWire, as shown in
Fig. 1. In literature, there are several attempts to de-
velop a GPU-like system based on FPGA technologies
[15, 16, 17], but they lack of dedicated frameworks and
the incompatibility with the high level programming lan-
guages (e.g., TensorFlow, PyTorch, Caffe), reducing the
adoption from the programmer community. To overcome
this main limitation, and avoid compatibility obsoles-
cence we decided to exploit LLVM compiler toolkit in
conjunction with the XLA tool provided by TensorFlow
which provide an interface to the LLVM compiler, as de-
tailed in Sec.3.2.

Figure 2. Detailed architecture of the RISC-V

3.1. Hardware architecture

The HW structure of the ICU4SAT is composed by three
IP cores. For each component, a simple description is
proposed as follows.

RISC-V

The RISC-V is a free and open ISA enabling a new era
of processor innovation through open standard collabo-
ration, experiencing rapid uptake in both industry and
academia. It is based on the fifth generation of RISC
design from UC Berkeley and its schematic is shown in
Fig.2. The ICU4SAT system mounts the CVA6 (Ariane)
RISC-V processor that has the following characteristics:

• 64-bit RISC-V ISA, Open Source;

• 6-stage, single issue, in-order CPU;

• It fully implements I, M, A and C extensions;

• Three privilege levels M, S, U to fully support a
Unix-like operating system (Linux capable).

soft-GPU

soft-GPU, shown in Fig.3, is a soft GPU-like architecture
for FPGAs.It is programmed using OpenCL and Tensor-
Flow kernels, and represents the most innovative compo-
nent of the ICU4SAT system. Its configuration can be
customized according to application needs.

• Portable, scalable and flexible. Dynamically HW
Reconfigurable;

• Multiple-Thread (SIMT) processor preliminary de-
scribed in VHDL;

• Power savings between 3.2x and 4.5x, with respect
to NEON ARM extension;

• Speedups between 10.6x and 48.5x, with respect to
NEON ARM extension;

• Area overhead between 3.0x and 17.7x.



Figure 3. Detailed architecture of the soft-GPU accelerator

To reflect as much as possible a real GPU architecture,
the soft-GPU implements a predefined number of Com-
putation Units (CUs). Each CUs contains 8 Processing
Elements, whose are responsible to execute the general
purpose, and matrix operations. Actually, it is possible to
synthesised up to 16 CUs, and exploit different arithmetic
precision within the PEs, i.e., 32, and 16 bits floating
point, 16, 8, and 4 bits integer. The number of CUs syn-
thesised on the FPGA effectively determines the power
consumption. In fact, the number of CUs can be mod-
ified directly during the mission, adapting the computa-
tional needs to the power budget available.

Communication module

SpaceFibre, described in Fig.4, is an open protocol devel-
oped under the ESA supervision, which standardisation
process ended in May 2019. It can reach very high-speed
throughput i.e., up to 100 Gbps directly on-board satel-
lites. SpaceFibre characteristics are:

• Meant to be used for Very high speed (up to
100Gbps) satellite On-Board Data-handling;

Figure 4. High level architecture of SpaceFibre.

• Full HDL implementation, with AXI Slave I/F;

• Built-in Quality of Service, Fault Detection Isola-
tion & Recovery;

• First In-Orbit demonstration mission is about to be
launched;

• Overcome limitation (Bandwidth, Flexibility, etc.)
of State-of-the-art solution.

Since the hardware system is composed by three inde-
pendent IP cores the first goal was to unify and integrate
them in a single IP solution. To reduce the integration
time and simplify the routing of the components, each of
them was implemented with an AXI bus as part of its de-
scription. The brain of the system SoC is the RISC-V
general purpose processor. It is responsible to schedule
the processes for soft-GPU, verify the internal function-
alities of the SoC, and, control the memory bus shared
among the components. The soft-GPU, instead, is re-
sponsible to accelerate the computer vision or artificial
intelligence inference tasks. It is started, stopped and re-
configured through the RISC-V processor, when needed,
and it is programmed through OpenCL and TensorFlow
high level languages. The communication module acts as
input/output interface with other modules of the satellite.
Furthermore, the three components, above mentioned,
have been integrated in a space-qualified FPGA, with the
big advantage of being suitable for any kind of missions.

In particular, entire system is able to:

1. Execute computer vision, compatible with OpenCL
standard, and artificial intelligence tasks;

2. Start or stop the inference process at any time;

3. Execute internal functionalities check;

4. Input/output data from a SpaceFibre/SpaceWire
module;



5. Soft-Reconfigure the soft-GPU IP via the RISC-V
processor.

The final result is a general-purpose Instrument Control
& Data Processing System on Chip which can be totally
programmed exploiting the powerful LLVM compiler in-
frastructure built appositely on top of it. The latter rep-
resents an innovative yet essential layer which enables
the programmability of the ICU4SAT through general-
purpose high-level programming languages, e.g., Python,
TensorFlow, PyTorch. This will open the doors for intel-
ligent applications to end users with expertise in Artificial
Intelligence but not familiar with hardware platforms.

3.2. Software architecture

The software part of ICU4SAT is composed by a
compiler, dedicated to the generation of the soft-GPU
executable kernels, and a development tool, offered to
end-users for deploying new applications with minimum
effort.
Considering the compiler part, we decided to exploit
LLVM project, which is a collection of modular and
reusable compiler and toolchain technologies, adding
our dedicated target hardware. More in detail, LLVM
is composed by three independent and complementary
components: the FrontEnd (FE), the Optimiser (OP)
and the BackEnd (BE). FE is responsible to parse the
high-level programming language (e.g., OpenCL, C++,
Python) in an Intermediate Representation (IR), a pseudo
assembly language that abstracts the generated code from
the hardware target. The IR code is then fed by the OP,
which removes unused/unnecessary functions/operations
and generate an optimised version of IR, the so-called
optimised IR. Finally, the latter is given as input to
the BE, which targets the optimised IR to the selected
hardware, generating the runnable code.
Since the soft-GPU is a new target hardware (obviously
it is not included in the official LLVM target BEs), we
have added a new BE to LLVM, independently from the
FE, in order to translate the IR code in the soft-GPU
executable file. Of course, BE is strictly related to the
specific hardware specifications, in order to generate the
most optimised code for the target soft-GPU. Therefore,
it has been co-designed and developed following the
hardware flow.
Moreover, the LLVM compiler allows to i) compile
OpenCL kernels to be run on the soft-GPU, ii) compile
TensorFlow compiled (XLA) kernels to be run on the
soft-GPU, iii) alert the user of incompatibility between
the kernels and the soft-GPU HW, and iv) generate
soft-GPU assembly files for debugging purposes.

Finally, to provide a good experience to the end users,
a simple preliminary development tool to generate the
soft-GPU scheduling and dispatching for the applications
has been developed and implemented. The tool can gen-
erate an empty application skeleton, providing the task
scheduling for the RISC-V and soft-GPU (i.e., the tasks

for the RISC-V and the tasks to be executed on the soft-
GPU). This allows to directly use OpenCL and Tensor-
Flow (not completely for the moment) to create neural
networks to be ran directly on the ICU4SAT system, hid-
ing the complete process of compiling, optimising, gener-
ating executable code and scheduling tasks for the target
hardware.

3.3. Innovation of ICU4SAT system

The ICU4SAT ecosystem has three key innovative ele-
ments: I) flexibility, II) modularity, III) customisability,
and IV) on-board design.

Flexibility
The entire HW structure of ICU4SAT is described in
HDL, allowing its customisability at any level. This fea-
ture allows the HW developer to customise the HDL in
case some operations should be optimised. Additionally,
the LLVM BE, which is written in C++, can be easily up-
dated with the new instructions, or a new sub-target HW
BE description can be implemented. This high flexibility
solution makes ICU4SAT very interesting both for those
who want to use it as it is and for those who are interested
in strongly customising it.

Modularity
Although it seems to be a common custom, using IP cores
allow to partially re-configure the soft-GPU, increasing
the modularity of the system, i.e., selecting only the com-
ponents that the user needs. The system becomes then in-
dependent from the FPGA platform. Furthermore, in case
the users will not need SpaceFibre/SpaceWire as commu-
nication module, they shall remove them and/or include
their IP communication module. Nevertheless, the pos-
sibility of commercializing the single IP core allows in-
teresting collaboration with big space system integrators,
which can be interested only in the soft-GPU accelerator.

Customisability
At the contrary of the dedicated HW accelerators devel-
oped on top of FPGA, the soft-GPU has its own developer
workflow. In the latter years, high-level frameworks for
AI applications have simplified the developing of these
algorithms, making the developers life very simple. Fol-
lowing the same example, we have provided a basic pre-
liminary framework, which will be improved to be com-
patible with the standard frameworks already available
(e.g., TensorFlow, PyTorch, and Caffe), able to port and
run computer vision and AI algorithms directly on the
ICU4SAT system.

On-board design
The new satellites era seems to be characterised by a
strong use of AI algorithms for the post-processing of
data on ground. This process requires to download the
data acquired by on-board sensors before processing it,
even when it is not relevant for the mission or not usable,
e.g., covered by cloud, corrupted, distorted, etc. Thanks
to the soft-GPU of ICU4SAT, part of the processing can
be shifted from ground to edge, relaxing bandwidth, and



storage pre-requisites. Moreover, the soft-GPU can exe-
cute computer vision kernels, leading to improvements in
the standard algorithms run on-board satellite, i.e., opti-
cal flow, re-binning etc.

4. RESULT

Preliminary performance results have been evaluated by
comparing the ICU4SAT against ARM with the NEON
vector engine and cache enabled, and a MicroBlaze con-
figured for maximum performance. The tests of the
ICU4SAT system have been carried out implementing
its soft core on Xilinx ZC706 FPGA using 250MHz of
time constraint, while ARM core ran at 667 MHz and the
MicroBlaze at 185 MHz. The soft-GPU runs OpenCL
kernels compiled via LLVM ad-hoc compiler, while the
two processors run dedicated equivalent implementations
of those kernels compiled to achieve maximum perfor-
mance.

Fig. 5 shows the soft-GPU speedup over the ARM pro-
cessor when 8 CUs are synthesised. For each kernel, the
maximum, minimum, and the average speedup for differ-
ent problem sizes ranging from 256 to 256K are reported.
It is worth to note that for some kernels a minimum prob-
lem size is required to achieve a positive speedup for the
soft-GPU.

Fig. 6 shows the speedup of the soft-GPU over the Mi-
croBlaze according to the number of CUs synthesised.
The reported speedup is the average speedup over dif-
ferent problem sizes ranging from 256 to 256K, where
higher the number of CUs, the better.

Furthermore, thanks to the efficient use of the cache
memory, the soft-GPU achieves considerable speedup
also for operations that are less computationally inten-
sive. The achieved speedup improves as the ratio of
the number of performed arithmetic operations to the re-
quired number of memory accesses increases.

Figure 5. Speedup of soft-GPU using 8 CUs over ARM +
NEON

Figure 6. Speedup of soft-GPU over MicroBlaze

5. CONCLUSION

The proposed system is able to manage the Command &
Control needs of an ICU on one side, and on the other side
to analyse and process, directly on-board, data acquired
by the instrument sensors through AI and computer vi-
sion algorithms, discarding meaningless data with a con-
sequently optimisation of memory, bandwidth efficiency,
and final data readiness. Additionally, the soft-GPU par-
tial reconfigurability ensures the power efficiency in dif-
ferent load conditions. The hardware solution, coupled
with a dedicated LLVM compiler infrastructure, allows
an easy and fast software development, leaving to the fi-
nal users the possibility of focusing only on their appli-
cations. In fact, the ICU4SAT has two LLVM FrontEnd
interfaces dedicated to AI and computer vision, respec-
tively TensorFlow and OpenCL frameworks. The key ad-
vantage of the ICU4SAT is to integrate all these func-
tionalities in a single chip and, more in particular, on an
FPGA (even space grade ones). The result is an all-in-
one embedded reconfigurable smart ICU for image-based
space missions in a single chip. This result has been
achieved by integrating four hardware/software building
blocks:

• The open source, fully customisable RISC-V pro-
cessor as control unit in charge of data processing
and handling;

• soft-GPU core as hardware accelerator in charge of
implementing AI and computer vision algorithms;

• The SpaceFibre/SpaceWire IP-core as communica-
tion module in charge of providing standardised ex-
ternal high-speed interface to the other instrument
and satellite modules.

• Dedicated LLVM compiler and framework for the
ICU4SAT, which with its native compatibility with
OpenCL and TensorFlow XLA, allows to port and
compile directly different AI algorithms.

The proposed solution brings about a significant tech-
nology improvement in space applications especially at
hardware accelerator technology level.
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