

HPCB **High Performance Compute Board** A Fault-Tolerant Module for On-board Vision

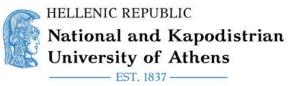
Processing

Cobham Gaisler AB Joaquín España Navarro 2021-06-17 EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESSING 2021

- Introduction
- Hardware Architecture
- FPGA VHDL design
- Microcontroller software
- VPU software
- Conclusion

Introduction Main objective

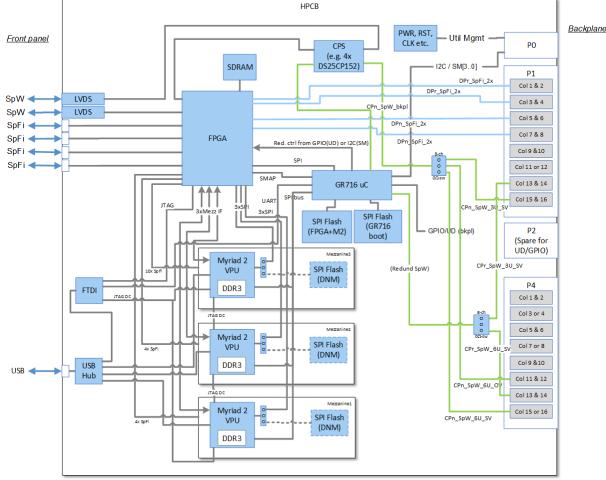
- ESA FPGA Accelerated DSP Payload Data Processor Board activity
- Develop a high-performance platform leveraging the AI techniques from the commercial domain to enable in-situ research in space
- Higher processing capabilities allows processing before downlink, reducing bandwidth requirements
- Desired features:
 - Capable of handling very high bit-rates
 - Interface multiple instruments simultaneously
 - Scalable, reconfigurable
 - System-level fault mitigation
 - On-board image processing
 - Data compression


5

Introduction Consortium

- Prime
 - Cobham Gaisler AB, Göteborg, Sweden
- Subcontractors
 - Ubotica Technologies Limited, Ireland
 - National and Kapodistrian University of Athens, Greece
 - QinetiQ Space NV, Belgium
- External services
 - Pender Electronic Design, Switzerland

European Space Agency Agence spatiale européenne



Hardware Architecture

Platform overview

- Payload Module
 - 6U by 160 mm
 - OpenVPX (VITA 65)
- Three main components:
 - Kintex Ultrascale XCKU060 FPGA
 - CG GR716 microcontroller
 - Intel Movidius Myriad 2 VPU
- Carrier board + 3 FMC cards
 - VITA 57.1 standard
- Main interfaces:
 - SpFi and SpW for control/data
 - SPI and CIF/LCD for Myriad
 - Debug interfaces

- New FPGA board: GR-VPX-XCKU060
 - Xilinx XCKU060, in 1517 pin FCBGA package
 - GR716B (initially with GR716A)
 - SODIMM DDR3 up to 8 GiB
 - SPI flash for FPGA configuration (512 Mbit), for GR716 boot (256 Mbit), and for data (256 Mbit)
 - Power, Reset, Clock and Auxiliary circuits
 - Three FMC Mezzanine expansion connectors
 - Scrubbing interface for FPGA
 - Backplane I/F: SpaceWire (control), SpaceFibre (data), VPX utility management
 - Front panel I/F and drivers: 4x SpaceFibre, 2x SpaceWire, USB/FTDI UART/JTAG Links, USB I/F to FMC
 - OpenVPX compatible, 6U format, Payload profile

www.gaisler.com/index.php/products/boards/gr-vpx-xcku060

Hardware Architecture GR-HPCB-FMC-M2

- New Mezzanine board: GR-HPCB-FMC-M2
 - Intel Myriad2 MA2450 (initially)
 - SPI flash 256 Mbit for optional boot mode
 - Local supply and power sequencing
 - Latch-up protection evaluation circuitry
 - The mezzanine board is intended for prototyping only

совнят

GR-VPX-XCKU060

and the information on this page are preliminary specifications

Xilinx XCKU060, in 1517 pin FCBGA packa

be GR-VPX-XCKU060 board features a Xilinx Kintex Litrascale 060 EPGA and a GR716 microc

Introductio

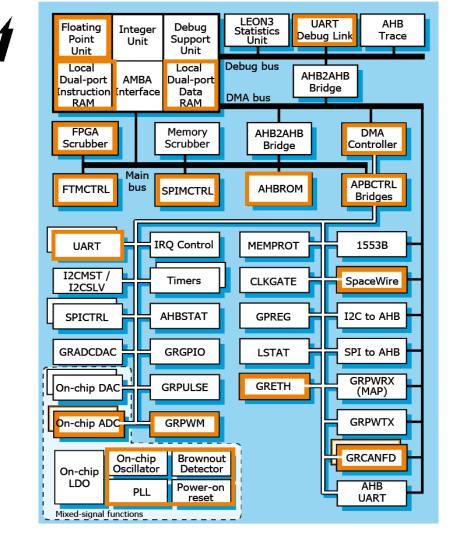
GR-VPY-YCKIIO6

www.gaisler.com/index.php/products/boards/gr-vpx-xcku060

The GR-VPX-XCKU060 carrier board and the GR-HPCB-FMC-M2 mezzanine board are developed as part of the High-Performance Compute Board of

Hardware Architecture

GR716B microcontroller

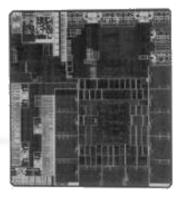

- LEON3FT Fault-tolerant SPARC V8 32-bit processor, **100** MHz
 - LEON-REX extension with 16-bit instructions: improved code density
 - **Pipelined** Floating Point Unit
 - Memory protection units
 - Non-intrusive advanced on-chip debug support unit
 - Determinism: Multi-bus, fixed interrupt latency, cache-less architecture...
- External EDAC memory: 8-bit PROM/SRAM, SPI (4 Byte)
- Hardware FPGA programming and scrubber
- 2-Port SpaceWire Router with time distribution support, 200 Mbps
- MIL-STD-1553B interface
- 2x CAN-FD controller interface with CANopen support for remote boot
- PacketWire with CRC acceleration support
- Programmable Enhanced PWM interface with Digital voltage control loop support
- SPI with SPI-for-Space protocols
- 10/100 Ethernet, UARTs, I2C, GPIO, Timers with Watchdog
- Programmable Enhanced DMA, Interrupt controller, Status registers, JTAG debug, etc.
- 4x ADC 13bits resolution @500ksps, 4 differential or 8 single ended channels
- DAC 12bits @ 3Msps, 4 channels
- LVDS with ColdSpare and Fail-Safe support, Mixed GPIOs
- Power-on-Reset and Brown-out-detection
- 12xAnalogue comparator, Temperature sensor, Integrated PLL
- On-chip regulator for 3.3V single supply
- 132 pin QFP, 24 mm x 24 mm

SPARC

Compliant

SCD V8

Hardware Architecture


Myriad 2 VPU

- Myriad 2 VPU architecture
 - 28nm ultra-low power (0.5W@600MHz) with power islands
 - Heterogeneous SoC: 2 LEON4@fp64 + 12 Shaves@fp32
 - 256+32KB LRAM, 2MB CMX, DDR3 support, DMAs
 - Power efficiency of 2Tops/W (max 16-bit equivalent)
- Applications
 - Visual analytics / indoor navigation
 - 360° panoramic video
 - Computational photography 3D modeling
 - Immersive gaming, augmented reality
 - DJI Phantom 4 / Mavic Pro Drones
 - FLIR Thermal Imaging
 - Google IoT
 - Microsoft Windows 10 Devices
 - Neural Compute AI Stick

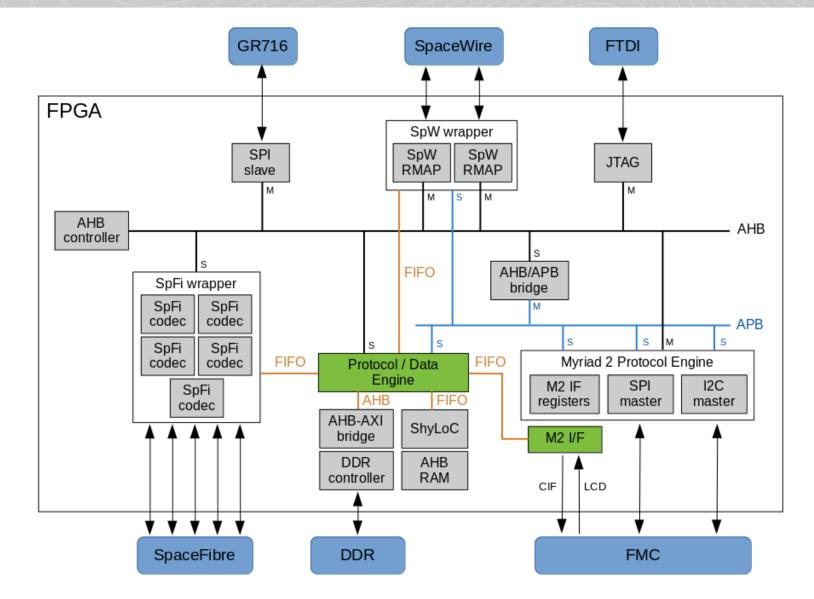
	DDR Controller					
		-bit AXI	128-bit AHB	128-bit AHE		
		256kB 2-way L2 cach	ie (SHAVE)			
1	2MB CMX SRAM					
<	Ports	64-bit 64-bit CMX X 12 SI	HAVEs	256kB 4-way	32k8 4-way	
32-bit APB	<u>*</u>			L2 cache (LEON4)	L2 cache (LEON4)	
	VRF 32x128	(10 ports)	or processor	32kB 2-way I-cache (LEON4)	4kB 2-way I-cache (LEON4)	
	IRF 32x32	(17 ports)		32kB 2-way D-cache (LEON4)	4kB 2-way D-cache (LEON4)	
1kB 1kl D-cache I-cac		UO LSU1 IAU SAU		LEON4 RISC2	LEON4 RISC1	

128/256MB LPDDR2/3 Stacked Di-

FPGA VHDL design

Overview

- High capacity XCKU060-FFVA1517C
 - Potential path to flight by upgrading to the rad-tolerant XQRKU060
- HPCB flow manager and VPU handling:
 - Implements controllers for the interfaces of the board: SpW, SpFi, SPI, I²C, CIF/LCD
 - Buffer configuration and application data in SDRAM
 - Control Myriad boot process and configuration
 - Communication with the System Controller
 - Support for non-redundant (SINGLE) and redundant modes (DMR, TMR)
 - Hardware acceleration
 - CCSDS 123.0 data compression
 - Temporal binning
- IPs from ESA portfolio + custom IPs
 - LEON2FT package, SpFi, SpW with RMAP, ShyLoC



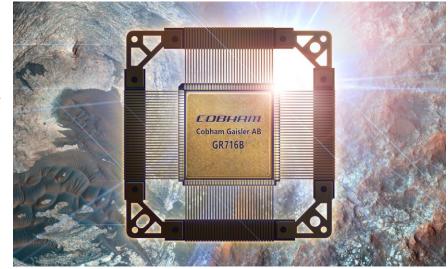
FPGA VHDL design

VHDL block diagram

FPGA VHDL design Preliminary figures

- Design currently being finalized
- AMBA clock of 50 MHz
- 32-bit central AMBA bus, 128-bit memory bus
- SpaceFibre links running at 3.125 Gbps
 - Support for switching bit-rate automatically by accessing the ports of the GTH transceiver
- SpaceWire links running at 100 Mbps
- FPGA Myriad SPI link running at 5 Mbps
- CIF/LCD interfaces running at 50 MHz, 16bpp
- Utilization: 23% LUTs \rightarrow TMR possible
 - Before adding hardware accelerators

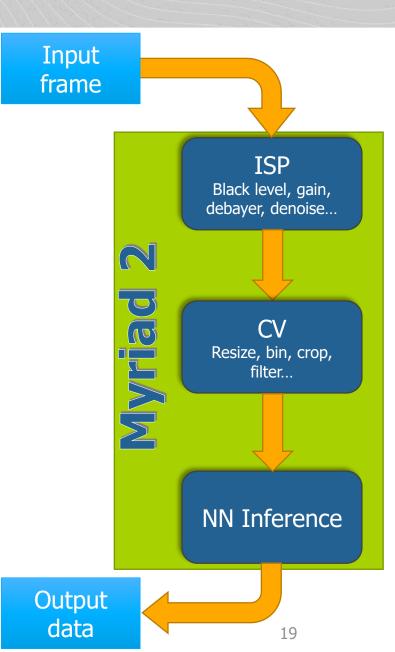
Resource	Utilization	Available	Utilization %
LUT	76026	331680	22.92
LUTRAM	2952	146880	2.01
FF	64298	663360	9.69
BRAM	77	1080	7.13
DSP	25	2760	0.91
10	438	624	70.19
GT	5	32	15.63
BUFG	33	624	5.29
ММСМ	5	12	41.67
PLL	3	24	12.50



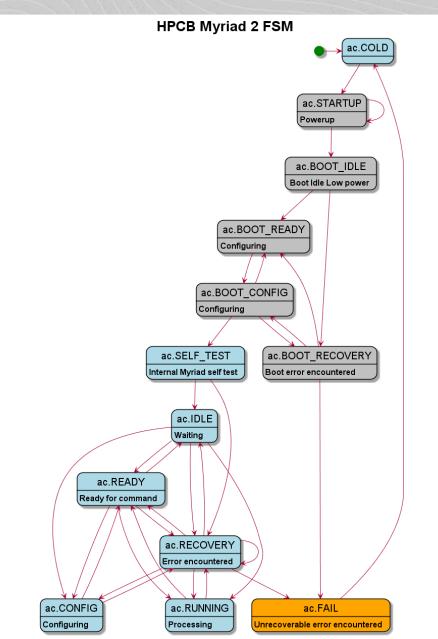
Microcontroller software

Overview

- Rad-tolerant component of the platform
- Present on the carrier board
- GR716A currently used
 - To be replaced by GR716B (under development)
- System supervisor:
 - Access to the SPI flash memories with the golden copy of the uC SW (self-boot), FPGA configuration and Myriad 2 boot images
 - Program and scrub the configuration area of the FPGA via SelectMAP (GR716B only)
 - Transfer the Myriad 2 SW to the FPGA via SPI
 - Trigger the VPU boot process once the transfer completes
 - Monitor the VPUs heartbeats and verify the processing results
 - If errors are detected or a heartbeat is missing, the GR716 resets the corresponding VPU



VPU Software



- Myriad 2 VPU
 - Performs all ISP, CV & AI tasks in the system
 - Executes user-design heterogeneous hardware-software pipelines
 - Internal HW blocks perform common ISP/CV tasks
 - Parallelised and optimized SW blocks run on VLIW vector processors
 - Up to 400MPix/s sustained throughput per Myriad for ISP/CV
 - >1TOPS of compute per Myriad
- VPU software designed for task flexibility
 - Vision and NN inference application development without requiring any embedded coding
- Myriad 2 radiation characterisation
 - 6 radiation test campaigns completed (SEL, SEU, TID)
 - No critical effects observed

VPU Software Features & Block Diagram

- Myriad 2 firmware driven by FSM
- Two-phase boot process
 - Enables high-bandwidth interface for boot firmware transfer
- Features
 - Vision Pipeline and NN blob replacement, on-device memory management
 - Dynamic reconfigurability of input and output image sizes, bit depths
 - Built In Self Test for chip level performance monitoring
 - Per-processor heartbeats for GR716 monitoring
 - Junction temperatures available on demand

VPU Software Vision, ISP and AI Compute

- Flexible ISP & CV pipelines
 - Drag & drop development of pipelines enabled via CVAI Toolkit software
- Wide AI model and framework support
 - Fully compatible with Intel OpenVINO toolchain and common frameworks: PyTorch, TensorFlow, Keras...
- Dynamic updates
 - New vision pipelines and AI models can be uploaded and selected at runtime from the System Controller
 - Enables frame level switching of pipelines
- Image pre-processing followed by NN inference tightly coupled on device
 - User and runtime reconfigurable

		Data Sink
		 Input
		vertical -1
Data Source		horizontal -1
		↓ planes_in_0 -1
vertical	Output	▲ bytes_per_pixel_in_0 -1
horizontal		
↓ planes_out_0	-1 🕨	
d bytes_per_pixel_ou	it_0 -1 🕨	 Debayering
		Input Outp
		▲ bytes_per_pixel_in_0 -1
		▲ bytes_per_pixel_out_0 -1
		▲ bytes_per_pixel_out_1 -1
		cfg 0,0,0,0,0,0,0,0
		thresh 0,0,0,1,0,0
		thresh 0,0,0,1,0,0 dewormCfg 0,0

TensorFlow	
K Keras OP	yTorch
💆 Caffe2	mxnet
-	
Movidius MA2450 Myriad 2	<pre>OpenVINO</pre>
	21

Conclusions Summary

- High-performance platform to do science in space using commercial AI parts
- System-level mitigation techniques by using a rad-tolerant microcontroller as the system supervisor
 - FPGA scrubbing
 - VPU monitoring and reset
- FPGA upgradeable with the Xilinx rad-tolerant counterpart
- Up to three VPUs operating simultaneously:
 - SINGLE mode to improve throughput
 - Redundant modes (DMR, TMR) to detect anomalous processing
- FPGA working memory: dual DDR3 SDRAM
 - Interface of 64 + 32 bits
 - Memories can be protected by EDAC
- Image processing in the VPUs, hardware accelerators in the FPGA

Conclusions Future work

- Current status:
 - HPCB under TRB review with ESA
 - Design fully tested with a single FMC card
 - Characterization of the CIF/LCD interfaces completed
- Future work:
 - Support for higher bit-rates:
 - SpW at 200 Mbps
 - SpFi up to 6.25 Gbps
 - Hardware acceleration
 - CCSDS 123.0 compression
 - Temporal binning
 - Backplane validation: HPCB as payload module in CORA rack
 - System verification with 3 FMC cards in parallel and benchmarking
 - Maximum throughput in SINGLE mode
 - Fault-injection in redundant modes
- Validation to be completed by end of 21Q3

For further information and inquiries

- www.caes.com/gaisler
- sales@gaisler.com

Thank you for listening!

