EUROPEAN WORKSHOP ON ON-BOARD DATA PROCESSING (OBDP2021), 14-17 JUNE 2021

PARALLELIZING ON-BOARD DATA ANALYSIS APPLICATIONS FOR A DISTRIBUTED
PROCESSING ARCHITECTURE

Patrick Kenny', Kurt Schwenk”, Daniel Herschmann?, Andreas Lund', Vishav Bansal®, Zain Alabedin Haj
Hammadeh?, Andreas Gerndt>*, and Daniel Liidtke?

'German Aerospace Center (DLR), Institute for Software Technology, 82234 Wefling, Germany
2German Aerospace Center (DLR), Space Operations and Astronaut Training, 82234 Wef3ling, Germany
3German Aerospace Center (DLR), Institute for Software Technology, 38108 Braunschweig, Germany
4Center for Industrial Mathematics (ZeTeM), University of Bremen, 28359 Bremen, Germany

ABSTRACT

The high data generation rates and real-time require-
ments of many modern satellite missions require increas-
ing on-board computational performance. In this work
we demonstrate the use of a data-flow-driven paralleliza-
tion of an on-board application on a scalable, distributed,
on-board computing architecture to achieve high com-
putational performance for a neural-network based im-
age classification application. The approach is based on
the Scalable On-Board Computing for Space Avionics
(ScOSA) architecture and the On-Board Data Analysis
and Real-Time Information System (ODARIS) software.
The analysis is performed on a lab setup of the ScCOSA
system consisting of three interconnected dual-core Xil-
inx Zynq processors running between one and six image
processing tasks in parallel. Each processor executes up
to two of these tasks. A centralized distribution task as-
signs each frame to one of the image processing tasks, al-
lowing concurrent processing of multiple frames without
requiring modification to the image processing algorithm.
Using this setup, an increased image processing through-
put was achieved by increasing the number of process-
ing tasks. Using three processing tasks, a throughput
2.5 times as high as with a single processing task was
achieved. The approach demonstrates the ability of the
distributed on-board data processing approach to deliver
a solution which provides scalability and high perfor-
mance. Processing complete data packages concurrently,
rather than splitting each package for parallel processing,
makes this method feasible for any application where in-
creasing package throughput is required and additional
processors can be added to meet the demand.

Key words: distributed systems; scalability; concurrent
execution; parallelization; data-flow.

1. INTRODUCTION

Modern satellite applications increasingly generate large
amounts of raw data on board. The traditional method
of downlinking data to perform the data analysis on the

ground is poorly suited to such large data volumes, espe-
cially when results are required in real time. To meet this
demand, on-board data analysis is an area of significant
interest. By processing the raw data on board, only the
relevant results need to be transmitted to ground, which
can decrease the required data transfer rate by several or-
ders of magnitude.

This work is based on the SCOSA project, an architecture
for a distributed and scalable on-board computer com-
bining multiple commercial-off-the-shelf and radiation-
tolerant processors, together with a middleware to en-
able the practical use of such a computer by applications,
developed at the German Aerospace Center (DLR). The
work uses the ODARIS system, also developed at DLR,
as a space-relevant application with high requirements for
computational performance. ODARIS provides an im-
age analysis and low-latency information system using
neural-network-based image processing.

The focus of this paper is the increase in data process-
ing throughput by processing multiple data packets si-
multaneously on different cores and different nodes. This
coarse-grained parallelization approach provides good
scalability, as processing nodes can be added as needed
to provide the required computational power. Using
the ScOSA platform, applications can take advantage of
these extra nodes with minimal concern for the underly-
ing distributed hardware structure. Another advantage of
this approach is that it does not rely on an application-
specific parallelization. Whereas parallelizing the pro-
cessing of a single image by, for example, processing
each line simultaneously requires detailed knowledge
of the algorithm and access to the algorithm’s source
code, as well as sophisticated and algorithm-specific
techniques, the approach presented here is possible even
with black-box algorithms. It can be easily implemented
without specialist knowledge of the algorithms and when
source code is not available, as may be the case for func-
tions from data-processing libraries.

A further advantage is that the application can run on
a CPU with any architecture and operating system sup-
ported by ScOSA. While many applications can benefit
from significant speed increases by implementations in
hardware, for instance using FPGAs, such an implemen-

tation must be written in a hardware description language,
which requires both detailed knowledge and a large time
expenditure.

This paper aims to demonstrate these advantages of the
ScOSA system and the coarse-grained parallelization,
using a neural network-based object-identification algo-
rithm running on the ODARIS platform. We operate three
networked processors in a lab setup running up to six
processing tasks in parallel, with an additional task to
manage the distribution of images to available process-
ing tasks. We achieve a data-processing throughput over
2.5 times as high as with a single task.

The remainder of the paper is structured as follows:
Section 2 provides an overview of other efforts to provide
high-performance on-board processing, and Section 3 de-
scribes the SCOSA and ODARIS platforms on which the
system is based, as well as the specific implementation
for this paper. Section 4 presents results from testing the
system, and Section 5 presents the conclusions and plans
for further development of the system.

2. RELATED WORK

Processing images from Earth-observation satellites is
an area of high demand for on-board data analysis.
Image-processing applications with real-time require-
ments range from forest fire and environmental monitor-
ing (such as the German Aerospace Center’s FireBIRD
constellation [1], and [2]) to hyperspectral target identifi-
cation for defense, security and civilian uses [3]. Artifi-
cial intelligence and on-board autonomy are also drivers
of increased demand for on-board computational power

[4].

One approach to improving data processing capabil-
ity is through the use of on-board hardware. Field-
programmable gate arrays (FPGAs) are a promising tech-
nology to achieve high performance with low power con-
sumption. Qi et al. [5] propose an algorithm to allow
implementation of pre-processing in hardware and use a
combined FPGA and digital signal processor (DSP) to
perform on-board data processing. A study by Kalo-
moiris et al. [6] also investigated FPGAs as a platform
for on-board processing of convolutional neural networks
(CNNs) and found favorable results compared to graphics
processing units (GPUs). A distributed on-board process-
ing system developed by Parache et al. [7] divides image
processing into compression and transmission, and exe-
cutes each function on a separate FPGA processor, with
the two connected by a Controller Area Network (CAN)
bus.

GPUs also offer potential for fast on-board processing via
their inherent parallelism. Setoain et al. [8] investigated
the use of GPUs for on-board processing of hyperspec-
tral images and found significant promise, with the GPUs
delivering high performance at low cost. However, Ma-
hendra et al. [9] evaluated the use of GPUs as an alter-

native to central processing units (CPUs) and FPGAs and
concluded that FPGAs are superior for on-board data pro-
cessing due to their lower power consumption and com-
parable or superior performance.

The data-processing algorithms executing on board have
been the target of research to develop more efficient and
parallelizable designs. Du and Nekovei [10] propose
modified algorithms for the processing of hyperspectral
images in real time, using a small portion of the pixels
to update the inverse data correlation matrix. Zhang et
al. [11] use Cholesky decomposition along with a lin-
ear solving system to analyze incoming image data in a
linewise fashion to achieve fast, real-time performance.

The performance advantage of commercial-off-the-shelf
(COTS) components over radiation-hardened compo-
nents makes them an attractive option for high-
performance on-board data processing. However, their
susceptibility to radiation effects, such as single-event ef-
fects, requires countermeasures in order to maintain the
necessary reliability. The development of reliable, on-
board computers based on COTS components remains an
active area of research. Czajkowski et al. [12] used a
combination of COTS microprocessors with time triple
modular redundancy and radiation-hardened components
to achieve high performance and radiation tolerance. The
HiRel program [13] sponsored by the European Space
Agency also aimed to develop a highly reliable on-board
computer using COTS components, including a CPU
based on the PowerPC architecture and an FPGA. A com-
bination of software techniques and special hardware pro-
vided good resilience to single-event effects.

Distributed systems offer the potential to increase on-
board processing power by combining the performance
of several individual processors. Fayyaz and Vladimirova
[14] propose a distributed, fault-tolerant on-board com-
puter using on-the-fly reconfiguration and wireless net-
working to connect the processing nodes. Weiss et al.
[15] have demonstrated the usefulness of a distributed
embedded computer architecture for achieving robust-
ness to failures for safety-critical applications in an au-
tomotive context. By dynamically remapping tasks to
computing nodes in the event of a node failure, quality
of service can be maintained longer without increasing
hardware redundancy.

3. METHOD

This section describes the two base components of the
system used in this work, ODARIS and ScOSA, as well
as the component developed atop this base for the current
case study.

3.1. Low-Latency Real-Time Communication Sys-
tem

The On-Board Data Analysis and Real-Time Information
System (ODARIS) addresses the increasing demand of
on-board data analysis and the amount of time required to
make valuable and critical information available for end
users [16]. The system provides three main features:

1. On-board analysis of sensor data (e.g. camera data).
2. An information service to:

(a) process user requests about specific data.

(b) automatically send push notifications to users
when pre-defined events occur.

3. Low-latency communication with end users via a
global satellite communication network.

To extend the capabilities of on-board data analysis and
to improve the quality of results, current state-of-the-art
machine learning algorithms are used. Furthermore, the
aim of ODARIS is not only to transfer the processed data
as telemetry via a ground station, but also to send them
immediately to the ground by utilizing low-latency, low-
bandwidth communication channels, provided by global
satellite communication networks, such as Iridium or
Globalstar [17, 18].

ODARLIS is suitable for applications such as the detection
of unregistered shipping, where real-time on-board image
processing and low-latency communication are necessary
in order to both detect objects of interest and inform end
users on the ground quickly enough to allow action to be
taken.

The software is derived from the former German
Aerospace Center (DLR) project Autonomous Real-Time
Detection of Moving Maritime Objects (AMARO) [19]
which focused on ship detection via computer vision al-
gorithms. The real-time communication was provided via
an Iridium-based message service [20]. The AMARO
system was successfully demonstrated on an airplane
mission in 2018 [21].

The generic ODARIS system consists of several services
to provide all of its features. The main components are:

1. Image analysis service: Processes incoming data on
board and stores the results.

2. Query and push service: Provides information to
end users either by a user request or as automated
push notifications triggered by customizable, pre-
defined events.

3. Real-time communication service: Interface to a
global satellite network for real-time communica-
tion.

4. Telemetry and telecommand service: Interface for
the telemetry and telecommunication data in a satel-
lite mission.

5. System management service: Interface to ScCOSA
middleware for general commanding of ODARIS.

For this experiment the image analysis service of
ODARIS is used within ScCOSA to measure the computa-
tional time of an object detection algorithm. The Tensor-
Flow library provides a suitable machine learning frame-
work to run the inference for image processing [22]. The
application is directly written in C++ to minimize re-
source consumption and uses the highly optimized Ten-
sorFlow Lite C++ API for the implementation. The data
processing task receives images as a serialized byte ar-
ray. Afterwards, the inference to detect objects is per-
formed via a pre-trained machine learning algorithm us-
ing four processing threads. The focus here is on the area
of convolutional neural networks (CNNs). The algorithm
is stored as a model file in a TensorFlow Lite format. The
results of the image processing mainly consist primarily
of:

1. The type of the object detected in the image.
2. The confidence in the type of the detected object.

3. The computational time needed for the inference
process.

The stored results can be further used by other ODARIS
services on demand.

TensorFlow’s first mobile computer vision model Mo-
bileNetV1 is used as the TensorFlow Lite model. This
model is pre-trained for about 1000 common objects and
is open-sourced by Google [23]. The network is classi-
fied as a CNN and uses an enhanced concept called depth-
wise separable convolution. Instead of processing a com-
plete 3 x 3 convolutional layer, the network splits the con-
volution into a 3x 3 depthwise convolution and a 1x 1
pointwise convolution [24]. With this method the num-
ber of parameters will be reduced compared to regular
convolutional layers resulting in increased performance
for embedded devices. More details about the neural net-
work itself can be found within the work of Howard et al.
[25].

3.2. The Distributed On-Board Computer

The other main building block of this work is the Scal-
able On-Board Computing for Space Avionics (ScCOSA)
system, a distributed computing architecture developed
at DLR [26]. The hardware design of ScOSA com-
bines multiple COTS processors with radiation-hardened,
space-qualified processors, to provide both high com-
putational performance and high reliability. The pro-
cessors are connected via a SpaceWire or Ethernet net-
work. The COTS processors provide high computational

performance, and are referred to as high-performance
nodes (HPNs), while the radiation-hardened processors,
referred to as reliable computing nodes, provide robust-
ness against radiation-induced failure.

To allow applications to effectively utilize the distributed
system, the middleware portion of the SCOSA system
[27] provides a framework, called the Tasking Frame-
work [28], based on a data-flow paradigm. Applications
are divided into fasks which are assigned to processing
nodes and connected via channels. Tasks are typically
triggered for execution when data is available on all input
channels. A simple example of the task-channel model of
the Tasking Framework is shown in Figure 1. This frame-
work has several advantages over a more typical proce-
dural programming paradigm: reliability is enhanced by
allowing tasks to be easily reconfigured to execute on a
different node (for example, in response to the failure of
a node); it allows structured, convenient communication
between tasks executing on heterogeneous nodes; and,
it assists in parallelizing applications in a scalable way.
This final benefit, scalable parallelization, is the focus of
this paper.

input-output relationship —>

Figure 1. A simple example of the task-channel model of
the Tasking Framework. Channels are persistent objects
which store data and trigger the execution of tasks. Tasks
execute processing operations but typically do not store
data. Channels are connected to tasks as inputs or out-
puts. Tasks are usually configured to execute when data
is available on all input channels, and will push data to
outputs channels when complete. In this example, Chan-
nels 1 and 2 are inputs to Task 1. Channel 3 is an output
of Task 1 and an input to Task 2.

The lab implementation of the SCOSA system used for
the current experiment consists of three COTS high-
performance nodes. Each HPN is based on a Trenz Elec-
tronic TE0720-03-1CFA with a Xilinx Zyng-7000 [29]
system-on-chip (SoC). The HPNs are connected to each
other via Ethernet and use the UDP/IP protocol for com-
munication. All three SoCs use a Linux distribution cre-
ated using Petalinux [30], a toolchain for Xilinx devices
based on the Yocto software development kit.

3.3. Parallel Data Processing

In this experiment, we use the distributed extension of
the Tasking Framework provided by ScOSA to imple-
ment a data-driven architecture to process multiple im-
ages in parallel. We create multiple instances of the pro-
cessing task and configure these for execution on differ-

R N S

=
= S

ent nodes. The task-channel structure for the case of six
processing tasks on three nodes is shown in Figure 2.
Cases with fewer processing tasks follow the same pat-
tern. The numbers in the corner of the processing tasks
in the figure indicate the order in which these tasks are
added as the number of tasks is increased from one to six.
The ODARIS system, with its convolution of the neural
network to identify objects in the images, is responsible
for the majority of the entire system’s CPU usage, and
is the limiting factor in the image processing throughput.
It is therefore the target of parallelization and distribu-
tion among processors in this experiment, and is executed
within the processing tasks.

To achieve the distributed and parallel execution of the
data processing, a new task, the distribution task, was cre-
ated, which executes on Node 1. This task and its connec-
tions to other tasks directly related to the data processing
are shown in Figure 2. It is executed with a regular period
and reads unprocessed images as input.

The distribution task has an output channel for each pro-
cessing task through which it transfers the unprocessed
image and triggers the execution of the processing task
(solid lines in Figure 2). Each processing task has an
output channel which feeds back to the distribution task
(dashed lines in Figure 2). These feedback channels are
used to signal the availability of the processing task to re-
ceive and process new images. When the processing task
receives an image from the distribution task, it uses the
output to communicate that it is now busy and currently
unable to receive further images. When it has completed
the processing of the image, it uses this channel to indi-
cate to the distribution task that it is once more available.
This logic is shown in pseudo-code in Algorithm 1.

Algorithm 1: Data distribution task

execute()
image < ReadNextImage()
foreach processing task, t,, do
chanfeedback,n < GetFeedbackChanFromTask(ty)
availability < ReadFeedbackChan(chanfeedback,n)
if availability is True then
changata,n < GetDataChanToT ask(ty)
SendImageToChan(image, changqta,n)
return
end

end

When the distribution task is triggered and reads an im-
age, it scans the feedback channels from the processing
tasks for an available task, then sends the image to this
task. If no processing tasks are available, the distribution
task discards the image and will attempt to find a proces-
sor for the next image when triggered again.

4. EXPERIMENT

This section describes the method used to carry out a
benchmark test to demonstrate the system described in
Section 3 and presents the resulting data.

data channe| se—

feedback channel == == =3»

Node 2
y

Node 3

#2 #4
Processing Processing

Processing Processing

I
|
|
|
|
#3 #5 |
|
|
|
|

Figure 2. Structure of the tasks, channels and nodes involved in the parallel data processing for the case of six processing
tasks spread across three nodes. The distribution task on Node 1 receives input data and assigns the data to a processing
task, which may be on any node. Feedback channels from the processing tasks inform the distribution task about available

processing capacity.

Table 1. Number of processing tasks allocated to each
HPN

Total number of processing tasks
1 2 3 4 5 6
HPN 1 1 1 1 1 1 2
HPN 2 0 1 1 2 2 2
HPN 3 0 0 1 1 2 2

4.1. Experimental Setup

As each of the HPNs used in this experiment has a dual-
core processor, up to two processing tasks are assigned to
each HPN. To investigate the effect of parallelization on
the image throughput, the experiment was repeated with
between one and six processing tasks divided between
up to three HPNs. The allocation of processing tasks to
HPNs is detailed in Table 1.

For the lab-based experiment, the data distribution task
was configured to read pre-captured images with a resolu-
tion of 500 x 500 pixels cyclically from the flash memory
file system of Node 1. Each pixel consists of red, green
and blue channels, with 8 bits per channel, giving a data
size of 6 Mbit per image.

In a satellite-based application, image acquisition rate,
and thus the execution frequency of the distribution task,
would be chosen based on mission requirements to pro-
vide the necessary quality of service. The data process-
ing rate, and thus the number of processing nodes, would
then be chosen to ensure the processing capacity exceeds
the required production rate. For the benchmark test
shown here, however, the aim is to demonstrate the max-
imum processing capacity of the system. We therefore
choose a frequency for the distribution task which pro-

duces data faster than the processing tasks can process
it to ensure that the processing tasks are not idle due to
lack of input data. In this situation, when the distribution
task executes but all processors are busy, the image is dis-
carded and a new image is loaded when the distribution
task executes one period later.

For each repetition of the experiment, the program was
allowed to run for 120 seconds and the number of images
processed by each task was recorded.

4.2. Results

The image processing throughput achieved in the experi-
ments is shown in Figure 3. As the number of processing
tasks is increased from one to three, an approximately lin-
ear increase in the system’s image throughput is achieved,
as each new processing task is executing alone on a new
high-performance node. With three processing nodes, the
throughput is over 2.5 times the throughput with a single
task. Increasing the number of processing tasks beyond
three results in only a small increase in the system’s im-
age throughput. With six processing tasks, the throughput
is 2.8 times as high as with a single task. The diminishing
returns beyond three tasks is due to the limited number of
processing nodes. Processing tasks beyond the third are
sharing a node with existing tasks and competing for CPU
resources. As the CNN interference is multi-threaded, it
is able to make use of both cores of a CPU even when
running in a single task.

It is expected that if used with a single-threaded applica-
tion, performance would increase substantially until the
number of processing tasks equaled the number of CPU
cores.

Figure 4 shows the average time required to process each

w

X

System image throughput
(images per second)
3]

1 2 3 4 5 6
Number of processing tasks

Figure 3. Image throughput of complete system with be-
tween one and six processing tasks. Utilizing all three
nodes with three processing tasks results in a 2.5-fold
gain in throughput compared to a single task. Running
six tasks across three nodes results in a 2.8-fold gain com-
pared to a single task.

image as the number of processing tasks is increased. As
expected, this increases somewhat as more image proces-
sors are added, due to the overhead required to distribute
the tasks and the network delay in transferring images be-
tween nodes. Where the number of processing tasks is no
greater than the number of nodes, this increase is small.
With three processing tasks, the average time to process
one image is 19% higher than with a single node. Adding
a second task to an existing node increases this time con-
siderably, as the node’s CPU is shared between the two
concurrent tasks.

—_ = = e
S N B O
X

e 2
N ©
X

X

(seconds per image)

0.4

Average image processing time

e @
<IN

1 2 3 4 5 6
Number of processing tasks

Figure 4. Average processing time per image for systems
of between one and six processing tasks. The average
processing time per image is increased by 19% when run-
ning three tasks across three nodes. Running six tasks
across three nodes results in a 111% increase.

5. CONCLUSIONS AND FUTURE WORK

The distributed version of the Tasking Framework in the
ScOSA system allows for parallelization of processing-
intensive tasks without requiring in-depth knowledge of
or modification to the underlying algorithms, and without
requiring a large implementation effort.

This provides a scalable method to increase the through-
put of on-board data processing tasks. The system’s data
throughput increases in approximately linear proportion
to the number of processors available. The total data
throughput achievable by such a system is likely to be
limited by the amount of hardware, and the associated
electrical and thermal considerations, before limitations
inherent to the SCOSA system become restrictive. Where
the tasks are multi-threaded and able to utilize all cores
of the processor, adding additional tasks to the processor
has minimal benefit.

The parallelization in the described system has little ef-
fect on the processing time for a single task, as long each
processing task executes on a dedicated processor. While
this approach is not suitable for situations where decreas-
ing the latency of a single data packet’s processing is of
primary importance, the overhead required to achieve the
increased throughput is achieved with little impact on the
latency. Any applications for which the rate of process-
ing is critical could potentially benefit from the technique
described in this paper, allowing applications to process
data with higher frequency, resolution or analytical detail.

5.1. Future Work

To continue the work described in this paper, we plan
to deploy the ScCOSA-ODARIS software to the European
Space Agency’s OPS-SAT. The dual-core processor on
the OPS-SAT’s on-board computer will be used to con-
currently run two image processing tasks. This will pro-
vide experience operating the system in orbit and allow
the use of images acquired by the on-board camera in real
time.

The system is also planned to be deployed to the up-
coming DLR compact satellite, which will contain a cus-
tom, distributed on-board computer designed as part of
the ScOSA Flight Experiment project, described in [27].

For these flight experiments, the image processing neural
network of ODARIS will be trained for an application-
specific purpose, such as ship or cloud detection.

REFERENCES

[1] Olaf Frauenberger, Erik Borg, Winfried Halle, Eck-
ehard Lorenz, Jens Richter, and Thomas Terz-
ibaschian. The DLR FireBIRD Mission - A Techno-
logical Experiment for Operational Wildfire Moni-
toring. In M. JA. Marow et al., editors, Trudy LII

(2]

(3]

[6]

[7]

Chtenij, Posvjashhennyh Razrabotke Nauchnogo
Nasledija I Razvitiju Idej K. Je. Ciolkovskogo. Sek-
cija ”Problemy Raketnoj I Kosmicheskoj Tehniki”,
Kaluga, 19-21 Sentjabrja 2017 G., Kazan, Russia,
2018.

Telmo Adao, Jonas Hruska, Luis Padua, José Bessa,
Emanuel Peres, Raul Morais, and Joaquim Jodo
Sousa. Hyperspectral Imaging: A Review on UAV-
Based Sensors, Data Processing and Applications
for Agriculture and Forestry. Remote Sensing,
9(11):1110, November 2017. Number: 11 Pub-
lisher: Multidisciplinary Digital Publishing Insti-
tute.

Michael T. Eismann, Joseph Meola, and Alan D.
Stocker. Automated hyperspectral target detection
and change detection from an airborne platform:
Progress and challenges. In 2010 IEEE Interna-
tional Geoscience and Remote Sensing Symposium,
pages 4354-4357, July 2010. ISSN: 2153-7003.

Jan-Gerd Mef3, Frank Dannemann, and Fabian
Greif. Techniques of Artificial Intelligence for
Space Applications - A Survey. In European Work-
shop on On-Board Data Processing (OBDP2019),
Noordwijk, Netherlands, February 2019. European
Space Agency.

Baogui Qi, Hao Shi, Yin Zhuang, He Chen, and
Liang Chen. On-Board, Real-Time Preprocessing
System for Optical Remote-Sensing Imagery. Sen-
sors, 18(5):1328, May 2018. Number: 5 Publisher:
Multidisciplinary Digital Publishing Institute.

Ioannis Kalomoiris, George Pitsis, Grigorios
Tsagkatakis, Aggelos Ioannou, Christos Kozani-
tis, Apostolos Dollas, Panagiotis Tsakalides, and
Manolis GH Katevenis. An Experimental Analy-
sis of the Opportunities to Use Field Programmable
Gate Array Multiprocessors for On-board Satellite
Deep Learning Classification of Spectroscopic Ob-
servations from Future ESA Space Missions. In
European Workshop on On-Board Data Process-
ing (OBDP2019), page 9, Noordwijk, Netherlands,
2019. European Space Agency.

Yago Isasi Parache, Dr Pablo Ghiglino, and Nico-
las Perzo. High Performance On-Board Image
Processing using CANOpen for Earth Observation
Satellites. In European Workshop on On-Board
Data Processing (OBDP2019), page 7, Noordwijk,
Netherlands, 2019. European Space Agency.

Javier Setoain, Manuel Prieto, Christian Tenllado,
and Francisco Tirado. GPU for Parallel On-Board
Hyperspectral Image Processing. The International
Journal of High Performance Computing Applica-
tions, 22(4):424-437, November 2008. Publisher:
SAGE Publications Ltd STM.

H. N. Mahendra, S. Mallikarjunaswamy, G. K. Sid-
desh, M. Komala, and N. Sharmila. Evolution of
real-time onboard processing and classification of
remotely sensed data. Indian Journal of Science and
Technology, 13(20):2010-2020, May 2020.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

Qian Du and Reza Nekovei. Fast real-time onboard
processing of hyperspectral imagery for detection
and classification. Journal of Real-Time Image Pro-
cessing, 4(3):273-286, August 2009.

Lifu Zhang, Bo Peng, Feizhou Zhang, Lizhe Wang,
Hongming Zhang, Peng Zhang, and Qingxi Tong.
Fast Real-Time Causal Linewise Progressive Hy-
perspectral Anomaly Detection via Cholesky De-
composition. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing,
10(10):4614-4629, October 2017.

D.R. Czajkowski, M.P. Pagey, PK. Samudrala,
M. Goksel, and M.J. Viehman. Low Power, High-
Speed Radiation Hardened Computer Flight Exper-
iment. In 2005 IEEE Aerospace Conference, pages
1-10, March 2005. ISSN: 1095-323X.

S. Esposito, C. Albanese, M. Alderighi, F. Casini,
L. Giganti, M. L. Esposti, C. Monteleone, and
M. Violante. COTS-Based High-Performance Com-
puting for Space Applications. IEEE Transactions
on Nuclear Science, 62(6):2687-2694, December
2015.

Muhammad Fayyaz and Tanya Vladimirova. Sur-
vey and future directions of fault-tolerant dis-
tributed computing on board spacecraft. Advances
in Space Research, 58(11):2352-2375, December
2016.

Philipp Weiss, Andreas Weichslgartner, Felix
Reimann, and Sebastian Steinhorst. Fail-
Operational Automotive Software Design Using
Agent-Based Graceful Degradation. In 2020 De-
sign, Automation Test in Europe Conference Exhibi-
tion (DATE), pages 1169-1174, March 2020. ISSN:
1558-1101.

Kurt Schwenk and Daniel Herschmann. On-board
data analysis and real-time information system. In
Deutscher Luft- und Raumfahrtkongress 2020, Ok-
tober 2020.

Iridium Communications Inc.
2021.
05-31.

Globalstar Inc. Official webpage, 2021.
https://www.globalstar.com. Accessed 2021-05-31.

Kurt Schwenk, Katharina A. M. Willburger, and
Sebastian Pless. Amaro-autonomous real-time de-
tection of moving maritime objects: introducing a
flight experiment for an on-board ship detection sys-
tem. In Earth Resources and Environmental Remote
Sensing/GIS Applications VIII, volume 10428, page
1042808. SPIE Digital Library, Oktober 2017.

Iridium Communications Inc. Irid-
ium short burst data (SBD), 202I.
https://www.iridium.com/services/details/iridium-
sbd. Accessed 2021-05-31.

Katharina Willburger, Kurt Schwenk, and Jorg
Brauchlee. AMARO - An on-board ship detec-
tion and real-time information system. Sensors,
20(5):1324, Februar 2020.

Official webpage,
https://www.iridium.com/. Accessed 2021-

[22] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
Manjunath Kudlur, Josh Levenberg, Rajat Monga,
Sherry Moore, Derek G. Murray, Benoit Steiner,
Paul Tucker, Vijay Vasudevan, Pete Warden, Mar-
tin Wicke, Yuan Yu, and Xiaogiang Zheng. Ten-
sorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 265—
283, Savannah, GA, November 2016. USENIX As-
sociation.

Andrew G. Howard, Menglong Zhu. Mobilenets:
Open-source models for efficient on-device vision.
https://ai.googleblog.com/2017/06/mobilenets-
open-source-models-for.html. Accessed 2021-05-
31.

Abhijeet Pujara. Mobilenet convolutional
neural network machine learning algorithms.
https://medium.com/analytics-vidhya/image-
classification-with-mobilenet-cc6fbb2cd470.
Accessed 2021-05-31.

Andrew G. Howard, Menglong Zhu, Bo Chen,
Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural net-
works for mobile vision applications, 2017.

Carl Johann Treudler, Heike Benninghoff, Kai
Borchers, Bernhard Brunner, Jan Cremer, Michael
Dumke, Thomas Girtner, Kilian Johann Héflinger,
Daniel Liidtke, Ting Peng, Eicke-Alexander Risse,
Kurt Schwenk, Martin Stelzer, Moritz Ulmer, Si-
mon Vellas, and Karsten Westerdorff. ScOSA -
Scalable On-Board Computing for Space Avionics.
In Proceedings of 69th International Astronautical
Congress (IAC 2018), October 2018.

Andreas Lund, Zain Alabedin Haj Hammadeh,
Patrick Kenny, Vishav Vishav, Andrii Kovalov,
Hannes Watolla, Andreas Gerndt, and Daniel
Liidtke. ScOSA system software: the reliable and
scalable middleware for a heterogeneous and dis-
tributed on-board computer architecture. CEAS
Space Journal, May 2021.

Zain A. H. Hammadeh, Tobias Franz, Olaf
Maibaum, Andreas Gerndt, and Daniel Liidtke.
Event-Driven Multithreading Execution Platform
for Real-Time On-Board Software Systems. In Pro-
ceedings of the 15th annual workshop on Operat-
ing Systems Platforms for Embedded Real-time Ap-
plications, pages 29-34, Stuttgart, Germany, July
2019.

Xilinx. Zyng-7000 SoC Technical Reference Man-
ual, 2021.

Xilinx. PetaLinux Tools Documentation, 2020.

