Parallelizing On-Board Data Analysis Applications for a Distributed Processing Architecture

Patrick Kenny¹, Kurt Schwenk², Daniel Herschmann², Andreas Lund¹, Vishav Vishav³, Zain Alabedin Haj Hammadeh³, Andreas Gerndt^{3,4}, Daniel Lüdtke³

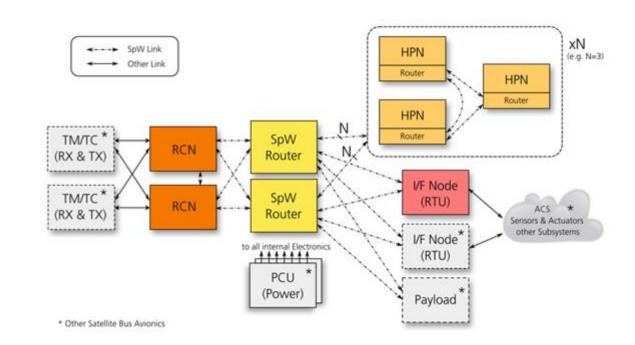
¹German Aerospace Center (DLR), Institute for Software Technology, 82234 Weßling, Germany ²German Aerospace Center (DLR), Space Operations and Astronaut Training, 82234 Weßling, Germany ³German Aerospace Center (DLR), Institute for Software Technology, 38108 Braunschweig, Germany ⁴Center for Industrial Mathematics (ZeTeM), University of Bremen, 28359 Bremen, Germany

Knowledge for Tomorrow

Overview

- Aim
 - Increase throughput of on-board data analysis
- Application
 - Real-time information system
 - Neural-network-based image processing
- Approach
 - Coarse-grained parallelization
 - Distributed system
 - COTS CPUs
 - Based on ScOSA and ODARIS systems from DLR
- Advantages
 - Algorithm agnostic
 - Scalable
 - Applications run in software

Background

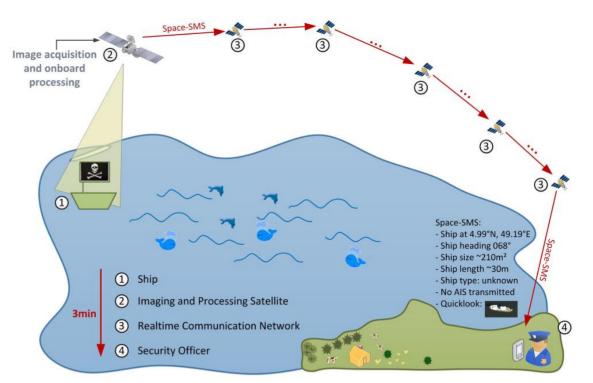

- Satellites are producing large quantities of data
 - Earth observation
 - Multi-spectral imaging
 - On-board autonomy
- Real-time applications
- Downlink rates limit ground-based processing
- Space-grade processors too slow

ScOSA


- Scalable On-Board Computing for Space Avionics
- Distributed computer
- High-performance COTS processors
- High-reliability space-grade processors
- Middleware for convenient use
- SpaceWire and Ethernet support
- RTEMS and Linux support

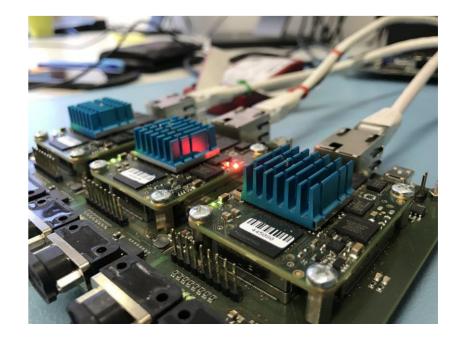
Tasking Framework

- Data-flow paradigm
 - Tasks
 - Channels
- Distributed execution
- Easy parallelization

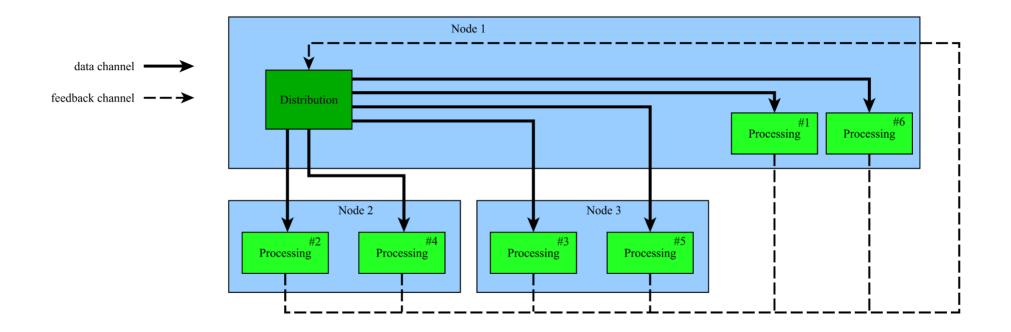


ODARIS

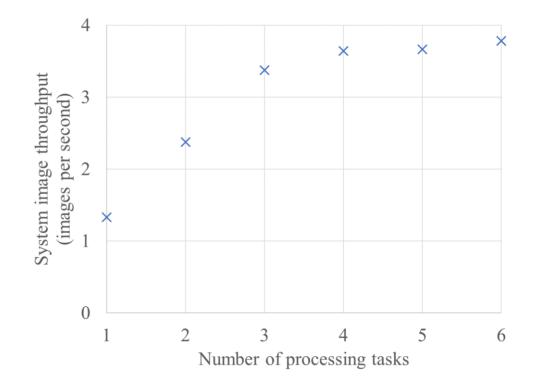
- On-Board Data Analysis and Real-Time Information System
- · On-board analysis of sensor data
 - Machine learning
- Information service
 - Query-based user requests
 - Event-based push notifications
- Low-latency communications
- Multiple possible applications
 - Detection of clouds, icebergs, ships



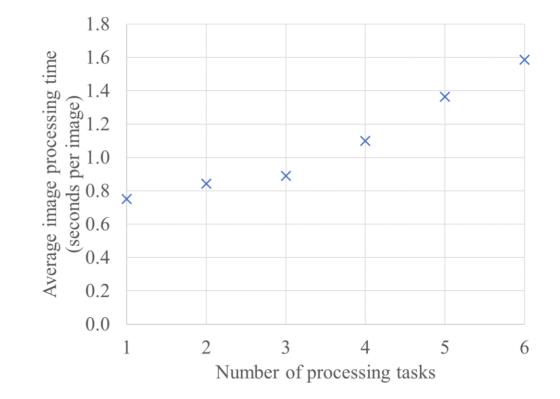
Schwenk, K., Willburger, K., & Pless, S. (2017). Amaro-autonomous real-time detection of moving maritime objects: Introducing a flight experiment for an on-board ship detection system. *Earth Resources and Environmental Remote Sensing/GIS Applications VIII*, 10428, 1042808. <u>https://doi.org/10.1117/12.2277991</u>


Experiment

- 3x Xilinx Zynq-7020 SoCs
- Ethernet connection
- Image classification
 - Convolutional neural network
 - TensorFlow Lite MobileNetV1
 - 4 threads


Task-Node Structure

Results: Processing throughput

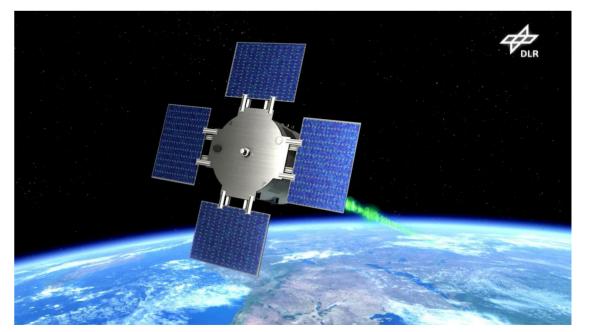

- 2.5 times speed up with 3 tasks and 3 nodes
- Little further improvement with 6 tasks and 3 nodes (tasks are already multi-threaded)

Results: Processing time

- Acceptable overhead with 1 task per node
 - 19% longer processing time
- 2 tasks per node causes significant slowdown

Conclusions

ScOSA system allows


- · coarse-grained parallelization of processing intensive tasks
- significant speedup possible
- scalable by adding processors
- No in-depth algorithm knowledge required
 - Low implementation effort for application developers
 - Possible with black-box algorithms

Future Work

- Deployment to ESA OPS-SAT
- Deployment to DLR Compact Satellite
 - Further hardware development in progress
- Integration with other ODARIS components
 - TM/TC
 - Low-latency satellite communication
 - Application-specific data processing

Previous DLR Compact Satellite Mission Eu:CROPIS

DLR - Dossier zur Mission Eu:CROPIS. (o. J.). MISSION DLR Portal. Abgerufen 9. Juni 2021, von <u>https://www.dlr.de/content/de/missionen/eucropis.html</u>