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ABSTRACT 

This work presents an error detection and diagnosis IP 

for space applications to enable fault tolerance by error 

detection and recovery on COTS processors. Its low-

latency error detection capabilities and richness of trace 

information allow to perform effective fault diagnosis. 

1. INTRODUCTION 

Microprocessors are commonly used in all kinds of 

applications, such as commercial appliances, industrial 

controllers, communications, and embedded systems. 

They are becoming more common also in safety-critical 

applications. When operating in harsh environments, as 

in presence of radiation, microprocessors can be 

affected by faults, which may alter their intended 

behavior producing undesirable errors [1]. 

Nowadays, there are diverse techniques to design or 

build integrated circuits and microprocessors to be 

intrinsically resilient to radiation-induced errors, as 

Radiation Hardening By Design (RHBD) or Radiation 

Hardening By Process (RHBP). However, these 

hardening techniques usually lead to expensive 

solutions which cannot be afforded in cost-constrained 

applications. Moreover, by applying such techniques, 

resulting systems commonly require higher power and 

provide lower performance than commercial 

counterparts. In fact, the available rad-hard integrated 

circuits lag two or more generations behind commercial 

equivalent components [2].  

In the last years, the interest in Commercial Off-The-

Shelf (COTS) components for safety critical and even 

for space applications has increased, as they are 

attractive due to their higher performance and lower 

power consumption compared to their hardened 

counterparts. Nevertheless, when using COTS 

components, is the task of the system designer to assess 

the fault tolerance capabilities are at an acceptable level, 

transforming the traditional risk avoidance paradigm 

into risk management [3]. 

The use of COTS cutting-edge processing systems in 

space applications has received much attention due to an 

increasingly competitive commercial space sector. Such 

components would increment the processing capabilities 

on orbit to unprecedented levels, bringing a great 

competitive advantage. However, assuring reliability 

under the harsh space conditions is a challenge [4]. 

Single-event effects (SEEs) are a major concern in 

processors [5]. When using COTS components, 

available SEE protections are limited and the 

knowledge about the behavior of the device under 

radiation is poor. Error detection and diagnosis in 

modern microprocessors is a challenge, particularly due 

to the limited observability of the microprocessor 

internal resources. Typically, limited actions can be 

performed on the hardware to enhance radiation 

hardness. For that reason, COTS processors usually 

introduce software-level hardening, by modifying the 

code to increment robustness, but paying significant 

performance penalties. Moreover, software hardening 

can only protect software-accessible resources, but other 

processor resources may be left unprotected [6]. 

To achieve fault tolerance, processing systems based on 

COTS must be designed to implement error detection 

and recovery capabilities. However, few details are 

typically available about the internal architecture or 

implementation of COTS components, and the 

observability of the processor internal state is usually 

low. In addition, different failure modes presented by 

complex processing systems may need for diverse 

mitigation strategies, especially when considering 

different criticality levels [7]. 

Providing new solutions for COTS processors hardening 

may expand their usage in space missions and the 

associated on-board processing capabilities. In addition, 

subsequent cost and time reductions would make the 

space a more accessible market. 

In this work we present an IP module to detect and 

diagnose errors in microprocessors working under 

radiation environments. The IP uses the information 

provided by the trace interface of the processor to check 

execution flow and data correctness with low latency 

and no performance penalty. The IP has been developed 

within an industry-academia collaboration as part of a 

Ph.D. thesis and is currently available at Arquimea. 

The paper is organized as follows. Section 2 

summarizes the related work in the field. Section 3 

describes the proposed technique. Section 4 illustrates 



 

some application cases. Finally, section 5 presents the 

conclusion of this work. 

2. MICROPROCESSOR ERROR DETECTION 

AND DIAGNOSIS 

Hardening techniques for microprocessors are usually 

classified into hardware or software techniques. Hybrid 

hardening techniques are considered when both 

hardware and software are addressed to harden the 

device [5]. Such techniques are designed to address 

errors that can be classified into two main categories: 

those affecting execution flow, called control-flow 

errors, and those only affecting program data, called 

data errors. 

Software data hardening techniques usually rely on data 

replication and performing the same computations 

independently in each set of replicated data. The results 

of different computed data sets are then compared to 

stablish whether an error is present or not [8]. Data 

duplication techniques can effectively detect errors 

although data triplication is needed to perform error 

correction. As more data is replicated, associated 

performance and memory penalties are more severe, so 

tradeoffs must be considered to optimize error coverage 

against performance [9]. 

Software control-flow hardening techniques rely on 

signatures or assertions [10] to detect incorrect jumps in 

execution. Signatures are invariant results that are 

computed and checked during execution time. 

Assertions are special statements inserted in the 

application code to check the correctness of the 

executed code [5]. Extensive computation and checking 

of signatures and assertions may introduce significant 

performance and memory overheads. 

A common problem for all software approaches is that 

their coverage is limited to the resources which are 

accessible from software. Internal microprocessor 

resources, such as the pipeline registers, can exhibit 

critical fault modes which may be left unprotected by 

software techniques [6]. 

Hardware techniques commonly modify the architecture 

to introduce redundancy, being Triple Modular 

Redundancy (TMR) the most representative case. 

However, in COTS it is not possible to replicate or even 

to modify the hardware. As an alternative, external 

hardware can be used to determine the correctness of 

the processor behavior. The complexity and operation of 

the external hardware ranges from simple watchdog 

timers to bigger modules that may become as complex 

as the observed processor. Complex observer modules 

may increase power consumption and area requirements 

and may also introduce new faults on the system [11]. 

Besides, the connection point for the external hardware 

is a critical issue that has impacts on performance, error 

detection latency and observability limitations. 

An alternative approach for hardware redundancy is the 

replication of the entire processor, having two or more 

processors within a system. As processors become 

increasingly affordable, designers are leveraging the 

increasing availability of multicore processors in a 

single chip. Several approaches based on COTS 

multicore processors have been proposed for space 

applications, given that the faults on one processor core 

can be isolated from the other cores [12]. Lockstep is an 

extension of processor replication in which the 

execution of the replicas is synchronized. Simultaneous 

and symmetrical execution of the same application code 

should provide identical results in the absence of errors. 

If results differ, a rollback mechanism is needed to 

restore the system back to an error-free state. This 

approach is effective to detect data errors by comparing 

data results at several checkpoints during execution. 

However, in the case of control-flow errors, any of the 

processors could miss a checkpoint, resulting in an 

unprotected hang of the system. A watchdog timer 

could be used to overcome this limitation, but the 

associated high latency limits the efficiency of this 

solution. In addition, control-flow errors can become 

very complex, leading to latent effects that may not be 

reverted by system restoration [13].  

Radiation testing is the most widely accepted method to 

evaluate the suitability of electronic devices for space 

applications, including data processing systems. 

Radiation testing results may quantify the device 

susceptibility to errors and the ability of hardening 

techniques to detect them and/or mitigate their effects. 

However, common testing approaches do not generally 

pay special attention to the causes of such errors and the 

associated circuit vulnerabilities. By increasing the 

knowledge related to the sources of errors, it could be 

possible to protect the circuits in a more effective 

manner and improve mitigation techniques. 

Additionally, gaining insight about the faults can lead to 

assess the criticality of an error, i.e. risk management 

[3], to take the corresponding corrective action. 

Most existing diagnosis approaches evaluate the effects 

of errors and then try to deduct the origin of the fault 

using cause-effect analysis. However, the knowledge 

about the internal architecture and the observability of 

the system are crucial factors to effectively diagnose the 

error. A systematic approach is to evaluate the 

Architectural Vulnerability Factor (AVF) [14] of each 

processor resource to estimate their susceptibility to 

errors. Another approach is to perform extensive fault 

injection campaigns to create a fault dictionary 

associating fault location and observed effects to 

diagnose radiation-induced errors [15]. However, 

radiation-induced errors may present different 

characteristics from the modelled ones, limiting the 

effectiveness of such techniques. Moreover, fault 

consequences deeply depend on the application in 

execution, so it is difficult to develop a generic 

association between the errors and their origin. In 

addition, there are common errors, such as processor 



 

hangs or crashes, that may have diverse causes, 

increasing the complexity of the diagnosis task 

regardless of the fault diagnosis approach. The accuracy 

of fault diagnosis strongly depends on the quality and 

completeness of the gathered information about the 

error. Collecting the information immediately after the 

event is crucial to avoid losing relevant data that could 

be overwritten. 

The trace interface is a resource commonly found in 

modern microprocessors to support application 

development. It is initially intended to support software 

debugging and application profiling, by capturing 

relevant information concerning processor execution 

flow and data for those purposes. Such information is 

provided with low latency in a non-intrusive manner. 

However, once the application development is 

complete, the trace interface is commonly unused, so it 

can be reused for a different purpose with no cost.  

Trace information is best suited for dealing with 

asynchronous events, such as those produced by 

radiation. However, the use for error detection and 

diagnosis is new and it is not natively supported by the 

processor manufacturers or associated tools. In addition, 

the use of computer-based tools may not be suitable for 

detecting errors in an embedded system while it is in 

operation. For this reason, a special infrastructure must 

be developed to leverage the information available at 

the trace interface for error detection and diagnosis. 

The use of the trace infrastructures for processor online 

monitoring was first proposed in [16] to observe the 

execution of a LEON3 microprocessor and detect faults 

by computing signatures and comparing executions. 

Later works on this topic focused on soft-core 

microprocessors, which can be conveniently adapted or 

modified as needed to provide a wide and rich access to 

trace information [17]. However, the case of hard-core 

microprocessors is different. As the hardware cannot be 

modified and the internal resources cannot be accessed, 

the trace information must be obtained through hard 

macrocells that impose protocols and limit the available 

information [18]. 

ARM processors have achieved large market share in 

the commercial sector from the last two decades, and 

ARM-based space-oriented initiatives, such as 

Nanoxplore FPGAs or NASA HPSC, are becoming 

common. A wide range of competitive processor cores 

optimized for diverse applications, from low power to 

high performance, along with the ease of 

implementation in a System-on-Chip (SoC) may be two 

key factors for its success. ARM processor cores are 

also widely supported by software developers and 

libraries in many application fields, providing a huge 

knowledge base for new developments. CoreSight [19] 

technology is a family of components provided by ARM 

to support trace and debug capabilities on its processor 

cores. Almost every available ARM processor core is 

compatible with CoreSight technology. 

3. ERROR DETECTION AND DIAGNOSIS IP 

We are presenting a solution to tackle both radiation 

hardening and testability challenges regarding COTS 

microprocessors. We have developed a lightweight IP 

core in HDL that leverages the information available at 

the trace interface to detect and diagnose errors in ARM 

microprocessors, although the same approach could be 

applied to other processor architectures. The presented 

IP can oversee the behavior of a microprocessor or a 

SoC including more than one processor core, which is 

labeled as Processor Under Monitoring (PUM) within 

this document. The IP can observe execution flow and 

data values of PUM by monitoring the information 

provided by the trace interface in real time. It gives to 

the user the capability of detecting errors and obtaining 

error evidence and traceability with low latency, low 

impact on system design and no performance penalty.  

The IP is currently compatible with several ARM 

CoreSight trace components: Program Trace Macrocell 

(PTM), Instrumentation Trace Macrocell (ITM), Trace 

Funnel and Trace Port Interface Unit (TPIU) [19]. The 

IP is compatible with the trace interface protocol 

specification, attending specifically to the trace 

information that can be used to detect errors. To that 

end, the IP is designed to obtain Program Counter (PC) 

values and data values from trace data. The IP has been 

designed to require low power and small area to be 

embedded in an application with minimum penalties. 

Regarding performance, the IP design is optimized to 

decode and process trace data in real time to minimize 

fault detection latency. The implementation of the IP 

can be adapted to multiple scenarios thanks to its 

parametric design. Low pin count interface enables 

multiple integration schemes. It can be used as a 

microprocessor peripheral on a System on Chip, or as 

standalone in a multi-chip system. 

The IP has been developed and tested using Xilinx 

Zynq-7000 APSoC [20], integrating a dual core ARM 

Cortex-A9 processor. 

3.1. Interface description 

The IP can be connected to other devices through a set 

of interfaces, each one with a specific purpose within 

the intended error detection and diagnosis functionality. 

The top-level of the IP architecture is depicted in Fig. 1. 

Configuration interface. The IP is configurable 

through a set of configuration registers that can be 

accessed via the following compatible configuration 

interface options. 

• Advanced eXtensible Interface (AXI), for memory 

mapped SoC integration. 

• 4-pin Serial Peripheral Interface (SPI), for multi-

chip integration. 

The configuration interface also provides access to 

information related to error diagnosis. 



 

Trace interface. The IP trace interface is pin-to-pin 

compatible with ARM Trace Port Interface Unit (TPIU) 

pinout, which is present in most ARM processor 

implementations. The following signals are used: 

• TRACE_CLK: clock signal to synchronize trace 

data. 

• TRACE_CTL: control signal to indicate whether 

trace data is valid or not. 

• TRACE_DATA (N:0): variable bit width trace data 

stream. 

The IP is designed with 8-bit trace data port width by 

default. To enable compatibility with 1-bit, 2-bit and 4-

bit trace data port widths, an available additional 

module must be inserted between the trace port and the 

IP.  

Warning signal. Warning generator module can be 

configured to produce a warning signal upon the 

activation of any user-selected signals at error bus. This 

is typically used to indicate that an error has appeared 

but that the application can continue running, for 

example a data corruption that does not need for system 

reset, but only to ignore recently computed data. 

Frozen signal. Freezer module can be configured to 

freeze the entire IP core upon the activation of any user-

selected signals at error bus. Freeze signal is the 

resulting OR operation among all user-selected error 

signals at error bus. Once Freeze signal is activated, 

Frozen signal activates to indicate this situation. Once 

the IP is frozen, no further trace data will be processed, 

preserving the IP state for the user to gather error 

information through the configuration interface. In such 

a case, both PUM and the IP must be put back into a 

working, known state before continuing the application. 

Status Bus. Information about the state of the internal 

resources of the IP is provided in this bus.  

Error Bus. Every error signal generated by any internal 

resource of the IP is provided in this bus. 

3.2. Functional description 

The core of the IP is responsible of the management of 

the trace data supplied by the PUM, which is handled by 

a sequence of modules as depicted in Fig. 2. The IP 

works according to the following flow:  

1. Trace information is generated on the PUM 

(Processor Under Monitoring) and exported to the 

IP through the TPIU. Inside the IP, it first enters 

the Reformatter, which decodes formatted trace 

frames and rebuilds the original trace stream from 

each source.  

2. Depending on the source the trace comes from, it is 

sent to the corresponding trace decoder by the ID 

demux, which can be configured by the user with 

the identification code (ID) corresponding to each 

trace source present in the PUM. 

o The ITM decoder implemented in the IP can 

decode trace information produced by an 

Instrumentation Trace Macrocell, and the value 

retriever module obtains the values sent through 

the trace. Obtained data values can be sent to 

different user-configurable data checking 

resources, explained in section 3.3. 

o The IP can include one or more PTM decoder 

modules, each decoding trace information 

produced by a Program Trace Macrocell. The 

PC follower module obtains traced PC values, 

which correspond to a succession of instruction 

addresses of the corresponding PUM processor 

core. PTM decoder modules do not need a copy 

of the executed program to work. Thus, user is 

encouraged to enable branch broadcasting 

feature on PTM to maximize PC observability. 

Obtained PC values are sent to a set of 

checking resources, discussed in section 3.3. 

3. Checking resources examine the information 

received from the trace interface and, according to 

 
Figure 1. Top level view of the IP and interfaces 



 

their configuration, raise a dedicated error signal 

upon an error.  

4. The event evaluator module can perform logic 

operations with error signals to generate further 

error signals depending on more complex 

conditions. 

5. If Freeze signal is activated at any time, all IP core 

resources become frozen, preserving their state to 

enable error information retrieval by the user. 

3.3. Checking resources 

The error detection capabilities of the IP are defined by 

the integrated checking resources, represented in Fig. 2. 

Data checking. Different data checking resources are 

available, as data range checking, data dual comparison 

checking and data triple comparison checking. When 

the data value enters the data checker, it is sent to each 

resource according to user configuration. The same data 

value can be sent simultaneously to more than one 

resource: 

• Data range checking resource generates an error 

signal whenever the received value is outside the 

expected user-configurable bounds. User can 

configure this resource to change the behavior and 

produce an error if the value is inside bounds.  

• Data comparison checking resource can be dual or 

triple and generates an error signal whenever the 

received values match the corresponding Boolean 

operator. Both dual or triple type and Boolean 

operator are defined at implementation. User can 

also configure this resource to produce an error 

whenever the received values do not match the 

corresponding operator. Data is received 

sequentially, and the comparison is only performed 

when the last data value is received. For that reason, 

a configurable watchdog timer module is included 

in comparison checking resources to detect when a 

group remains incomplete for an excessive time.  

Program flow checking. PC range checker and PC 

loop watchdog resources receive the successive PC 

values from a single PUM core to check whether the 

execution flow is correct or not. 

• PC range checker resource constantly monitors all 

received PC values and raise an error signal in the 

case a particular value is outside of a set of user-

configurable allowed ranges.  

• PC loop watchdog resource is also constantly 

monitoring received PC values to check that a 

maximum time is elapsed between two consecutive 

receptions of a specific PC value. Selected PC value 

is commonly the first instruction of the main loop. 

In that case, the watchdog can be configured by the 

user to accurately detect functional interrupt errors 

by configuring the watchdog to raise an error signal 

in the case the elapsed time is greater than the 

maximum expected main loop execution time. 

Unlike traditional watchdog approaches, that rely 

on the processor to refresh the watchdog timer 

value, this approach does not need any action from 

the processor, improving reliability. 

Combined resources checking. The IP handles trace 

data from different sources simultaneously. For this 

reason, additional checking approaches can be designed 

to integrate information from more than one resource to 

detect and diagnose errors. These features are currently 

under development and will appear in the next release 

of the IP. 

• A lockstep checker could be implemented by 

combining PC information from more than one core 

running the same application in lockstep. Lockstep 

integrity could be checked by the IP in a non-

intrusive manner and with no performance penalty.  

 
Figure 2. Internal architecture view of the IP 



 

• Signature/assertion checking can also be achieved 

by combining PC information with data values from 

the trace. This way, the IP could check the 

correctness of the execution flow not only by 

checking the PC value against allowed ranges, but 

also by checking the correctness of the associated 

signature values online with execution.  

3.4. Error diagnosis 

The information available at the trace interface is very 

rich, and the data rate for a typical application can 

exceed 1Gbps. The IP is an independent entity designed 

to decode and examine such huge amounts of data to 

detect errors. But the IP not only obtains error-related 

data, but also trace data related to nominal execution. 

Thus, it is possible to go a step further by using such 

information to contextualize error appearance. If only 

error detection is performed from trace data, most 

relevant information about the error would be lost. 

However, by gathering such information, a wider view 

of each error can be obtained, and error diagnosis can be 

achieved. For example, when a faulty PC value is found, 

the user could get the previous PC values, that would 

give the point in execution where the error took place. 

In addition, when a faulty data value is found, the user 

could also observe the faulty value and previous ones. 

The presented IP has been designed to provide error 

diagnosis capabilities, by introducing historical data 

record on each checking resource. Once the IP has 

detected an error, it becomes frozen for the user to 

retrieve such historical information through the 

configuration interface. 

4. APPLICATIONS 

The IP has been developed in HDL, ready to be 

implemented in any FPGA platform. The parametric 

design of the IP increases flexibility and provides a 

wide range of user-configurable resources. Additionally, 

pre-implemented ready-to-use typical use case designs 

have been developed and can be provided to be used in 

commonly available development platforms for a 

quicker setup, evaluation, and deployment. Main IP 

specifications are listed in Tab. 1. The IP features high 

data throughput with small footprint, reduced pin count, 

and low latency. 

Several development phases are supported by the 

provided functionality: 

• Design: providing error detection and diagnosis 

capabilities during development to identify flaws in 

the system and enhance a given application to meet 

dependability requirements. 

• Device evaluation: detecting and classifying errors 

in different devices, allowing severity evaluation to 

provide objective criteria on component selection. 

Not only for COTS but also for space-oriented 

devices, it could help to understand and mitigate 

complex failure modes. 

• Operation: working side by side with a 

microprocessor to check the integrity of the 

executed application in real time, raise an alert upon 

error, and provide diagnosis information to perform 

the necessary corrective action with low latency, 

achieving fault tolerance. 

The IP can be integrated using two basic system 

architectures: binary architecture or ternary architecture,  

depending on the number of available processors in the 

system. 

In a binary architecture, only one processor, PUM 

(Processor Under Monitoring), and one IP are present. 

The IP is checking PUM execution through its trace 

interface and reporting error detection and diagnosis 

information to take corrective actions. If the found error 

is not recoverable, the IP would trigger a whole system 

Table 1. IP specifications 

 Condition Min Typ Max Units Comment 

Pin count SPI interface option 

No error signals 

6 10   Each error signal 

adds extra pins 

Error detection 

latency 

No nested events in event evaluator   23 TRACE_CLK 

clock cycles 

Event evaluator 

adds one cycle 

per each nested 

event 
140   ns 

Operating 

frequency 

Implemented on Xilinx XC7Z010   166 MHz TRACE_CLK 

frequency 

LUT count Synthesis for Xilinx Artix 7 series 2500 6000   6-input LUTs 

Flip Flop count Synthesis for Xilinx Artix 7 series 2700 7000   D-type FFs 

Trace Data 

throughput 

On-chip XC7Z010 over EMIO  

8-bit data width 

  1333 Mbps  

Off-chip XC7Z010 over MIO  

LVCMOS33 

4-bit data width 

  920 Mbps  

Off-chip XC7Z010 over EMIO 

TDMS33 

4-bit data width 

  1200 Mbps  

 



 

reset to avoid a permanent functional interrupt. A binary 

architecture is the minimum fault tolerant system that 

can be built around this IP and requires effort from the 

designer to assess that the whole system would meet the 

dependability requirements. Binary system architecture 

is depicted in Fig. 3 a). 

In the case of a ternary architecture configuration, the 

IP is checking the execution of a processor, PUM, 

which is only in charge of performing heavy, non-

critical tasks which require very high performance. An 

additional microprocessor, P1, is governing the entire 

system without supervision, so it must be expected to 

have very low error rate and provide all safety and time 

critical tasks to meet dependability requirements. 

However, there is probably no need for P1 to be 

extremely powerful because it can rely on PUM to 

perform all heavy, non-critical tasks. The IP will inform 

P1 whenever and error is found on PUM to take a 

corrective action. In this case, the designer effort is 

lower as the corrective action can be as simple as 

ignoring the last data packet or even a PUM reset, since 

PUM is not servicing any critical task. Ternary system 

architecture is depicted in Fig. 3 b). 

Several works have been conducted by the authors 

following the described trace monitoring approach using 

Xilinx Zynq-7000 AP SoC during the development of 

the IP. [21] and [22] demonstrated the feasibility of 

using trace information for error detection purposes in 

both control-flow and data with several application 

benchmarks, reaching up to 95% error coverage. Later 

works demonstrated the capability of the IP to be 

integrated in a more realistic application and to be 

combined with other hardening techniques such as dual 

core lockstep [23] and data redundancy acceleration 

using SIMD [24], achieving up to 99.9% error coverage. 

Most recent works illustrate the error diagnosis 

capabilities of the IP under proton and neutron 

irradiation [25] and also under laser fault injection [26], 

demonstrating fine granularity on discriminating error 

types, and the suitability of the recorded information to 

perform effective error diagnosis. 

5. CONCLUSIONS 

Increasingly competitive space industry constantly 

seeks for new solutions to enhance spacecraft 

processing capabilities on orbit. COTS processors, and 

particularly ARM cores, are receiving much attention in 

the last years due to their excellent performance and 

power consumption features. Despite COTS processors 

have been flown on successful missions, several 

challenges still prevent COTS processors to be 

massively adopted in space missions, as they involve 

risks regarding radiation hardness assurance. 

a) 

 

 

b) 

 
Figure 3. IP integrated in a) binary and b) ternary architecture configuration 

 



 

Providing solutions to ease the safe introduction of 

COTS processors on spacecraft may enable 

unprecedented computing capabilities on orbit, leading 

to a more efficient use of resources. This paper has 

presented a new error detection and diagnosis technique 

based on trace information monitoring and an IP design 

to implement it.  

Trace monitoring is a new tool in the designer’s toolbox 

to manage risks and improve the reliability of 

microprocessor-based space systems. This solution is 

currently available at ARQUIMEA as an IP core 

compatible with ARM Cortex-A9 processor. It has been 

functionally validated in Xilinx Zynq device under 

radiation testing (TRL3-4) obtaining high error 

detection rate (up to 99.9%) [24] and useful diagnosis 

information [25][26]. The IP features low pin count and 

parametric design ready to be implemented in any 

FPGA with low footprint. Currently, efforts are ongoing 

to enhance IP capabilities and compatibility with a 

wider range of technologies and processor cores, 

including Xilinx Zynq Ultrascale, Microchip rad-

tolerant devices and NanoXplore FPGAs. 
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